# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp import pickle import sys import tempfile from unittest import TestCase from unittest.mock import MagicMock, call, patch import mat4py import numpy as np from mmengine.logging import MMLogger from mmpretrain.registry import DATASETS, TRANSFORMS ASSETS_ROOT = osp.abspath(osp.join(osp.dirname(__file__), '../data/dataset')) class TestBaseDataset(TestCase): DATASET_TYPE = 'BaseDataset' DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.json') def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test loading metainfo from ann_file cfg = {**self.DEFAULT_ARGS, 'metainfo': None, 'classes': None} dataset = dataset_class(**cfg) self.assertEqual( dataset.CLASSES, dataset_class.METAINFO.get('classes', ('first', 'second'))) self.assertFalse(dataset.test_mode) # Test overriding metainfo by `metainfo` argument cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) # Test overriding metainfo by `classes` argument cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) classes_file = osp.join(ASSETS_ROOT, 'classes.txt') cfg = {**self.DEFAULT_ARGS, 'classes': classes_file} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1}) # Test invalid classes cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)} with self.assertRaisesRegex(ValueError, "type "): dataset_class(**cfg) def test_get_cat_ids(self): dataset_class = DATASETS.get(self.DATASET_TYPE) dataset = dataset_class(**self.DEFAULT_ARGS) cat_ids = dataset.get_cat_ids(0) self.assertIsInstance(cat_ids, list) self.assertEqual(len(cat_ids), 1) self.assertIsInstance(cat_ids[0], int) def test_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) head = 'Dataset ' + dataset.__class__.__name__ self.assertIn(head, repr(dataset)) if dataset.CLASSES is not None: num_classes = len(dataset.CLASSES) self.assertIn(f'Number of categories: \t{num_classes}', repr(dataset)) self.assertIn('Haven\'t been initialized', repr(dataset)) dataset.full_init() self.assertIn(f'Number of samples: \t{len(dataset)}', repr(dataset)) TRANSFORMS.register_module(name='test_mock', module=MagicMock) cfg = {**self.DEFAULT_ARGS, 'pipeline': [dict(type='test_mock')]} dataset = dataset_class(**cfg) self.assertIn('With transforms', repr(dataset)) del TRANSFORMS.module_dict['test_mock'] def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) self.assertIn(f'Annotation file: \t{dataset.ann_file}', repr(dataset)) self.assertIn(f'Prefix of images: \t{dataset.img_prefix}', repr(dataset)) class TestCustomDataset(TestBaseDataset): DATASET_TYPE = 'CustomDataset' DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.txt') def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test overriding metainfo by `metainfo` argument cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) # Test overriding metainfo by `classes` argument cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) classes_file = osp.join(ASSETS_ROOT, 'classes.txt') cfg = {**self.DEFAULT_ARGS, 'classes': classes_file} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1}) # Test invalid classes cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)} with self.assertRaisesRegex(ValueError, "type "): dataset_class(**cfg) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # test load without ann_file cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': '', } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) self.assertEqual(dataset.CLASSES, ('a', 'b')) # auto infer classes self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': osp.join(ASSETS_ROOT, 'a', '1.JPG'), 'gt_label': 0 }.items()) self.assertGreaterEqual( dataset.get_data_info(2).items(), { 'img_path': osp.join(ASSETS_ROOT, 'b', 'subb', '3.jpg'), 'gt_label': 1 }.items()) # test load without ann_file and without labels # (no specific folder structures) cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': '', 'with_label': False, } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 4) self.assertIsNone(dataset.CLASSES, None) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': osp.join(ASSETS_ROOT, '3.jpeg'), }.items()) self.assertGreaterEqual( dataset.get_data_info(1).items(), { 'img_path': osp.join(ASSETS_ROOT, 'a', '1.JPG'), }.items()) self.assertGreaterEqual( dataset.get_data_info(3).items(), { 'img_path': osp.join(ASSETS_ROOT, 'b', 'subb', '3.jpg'), }.items()) # test ann_file assertion cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': ['ann_file.txt'], } with self.assertRaisesRegex(TypeError, 'expected str'): dataset_class(**cfg) # test load with ann_file cfg = { **self.DEFAULT_ARGS, 'data_root': ASSETS_ROOT, 'ann_file': 'ann.txt', } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) # custom dataset won't infer CLASSES from ann_file self.assertIsNone(dataset.CLASSES, None) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': osp.join(ASSETS_ROOT, 'a/1.JPG'), 'gt_label': 0, }.items()) self.assertGreaterEqual( dataset.get_data_info(2).items(), { 'img_path': osp.join(ASSETS_ROOT, 'b/subb/3.jpg'), 'gt_label': 1 }.items()) np.testing.assert_equal(dataset.get_gt_labels(), np.array([0, 1, 1])) # test load with absolute ann_file cfg = { **self.DEFAULT_ARGS, 'data_root': '', 'data_prefix': '', 'ann_file': osp.join(ASSETS_ROOT, 'ann.txt'), } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) # custom dataset won't infer CLASSES from ann_file self.assertIsNone(dataset.CLASSES, None) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': 'a/1.JPG', 'gt_label': 0, }.items()) self.assertGreaterEqual( dataset.get_data_info(2).items(), { 'img_path': 'b/subb/3.jpg', 'gt_label': 1 }.items()) # test load with absolute ann_file and without label cfg = { **self.DEFAULT_ARGS, 'data_root': '', 'data_prefix': '', 'ann_file': osp.join(ASSETS_ROOT, 'ann_without_labels.txt'), 'with_label': False, } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) # custom dataset won't infer CLASSES from ann_file self.assertIsNone(dataset.CLASSES, None) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': 'a/1.JPG', }.items()) self.assertGreaterEqual( dataset.get_data_info(2).items(), { 'img_path': 'b/subb/3.jpg', }.items()) # test extensions filter cfg = { **self.DEFAULT_ARGS, 'data_prefix': dict(img_path=ASSETS_ROOT), 'ann_file': '', 'extensions': ('.txt', ) } with self.assertRaisesRegex(RuntimeError, 'Supported extensions are: .txt'): dataset_class(**cfg) cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': '', 'extensions': ('.jpeg', ) } logger = MMLogger.get_current_instance() with self.assertLogs(logger, 'WARN') as log: dataset = dataset_class(**cfg) self.assertIn('Supported extensions are: .jpeg', log.output[0]) self.assertEqual(len(dataset), 1) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': osp.join(ASSETS_ROOT, 'b', '2.jpeg'), 'gt_label': 1 }.items()) # test classes check cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'classes': ('apple', 'banana'), 'ann_file': '', } dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('apple', 'banana')) cfg['classes'] = ['apple', 'banana', 'dog'] with self.assertRaisesRegex(AssertionError, r"\(2\) doesn't match .* classes \(3\)"): dataset_class(**cfg) class TestImageNet(TestCustomDataset): DATASET_TYPE = 'ImageNet' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.meta_folder = 'meta' cls.train_file = 'train.txt' cls.val_file = 'val.txt' cls.test_file = 'test.txt' cls.categories = ['cat', 'dog'] os.mkdir(osp.join(cls.root, cls.meta_folder)) cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') with open(osp.join(cls.root, cls.meta_folder, cls.train_file), 'w') as f: f.write('\n'.join([ '1.jpg 0', '2.jpg 1', '3.jpg 1', ])) with open(osp.join(cls.root, cls.meta_folder, cls.val_file), 'w') as f: f.write('\n'.join([ '11.jpg 0', '22.jpg 1', ])) with open(osp.join(cls.root, cls.meta_folder, cls.test_file), 'w') as f: f.write('\n'.join([ 'aa.jpg', 'bb.jpg', ])) def test_initialize(self): super().test_initialize() dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'val'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split cfg['classes'] = self.categories dataset = dataset_class(**cfg) self.assertEqual(dataset.data_root, self.root) # Test split="test" cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'test' logger = MMLogger.get_current_instance() with self.assertLogs(logger, 'INFO') as log: dataset = dataset_class(**cfg) self.assertFalse(dataset.with_label) self.assertIn('Since the ImageNet1k test set', log.output[0]) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, 'train', '1.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test split="val" cfg = {**self.DEFAULT_ARGS, 'split': 'val'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, 'val', '11.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, 'test', 'aa.jpg')) # test override classes cfg = { **self.DEFAULT_ARGS, 'classes': ['cat', 'dog'], } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) self.assertEqual(dataset.CLASSES, ('cat', 'dog')) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) class TestImageNet21k(TestCustomDataset): DATASET_TYPE = 'ImageNet21k' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.meta_folder = 'meta' cls.train_file = 'train.txt' os.mkdir(osp.join(cls.root, cls.meta_folder)) with open(osp.join(cls.root, cls.meta_folder, cls.train_file), 'w') as f: f.write('\n'.join([ 'cat/a.jpg 0', 'cat/b.jpg 0', 'dog/a.jpg 1', 'dog/b.jpg 1', ])) cls.DEFAULT_ARGS = dict( data_root=cls.root, classes=['cat', 'dog'], ann_file='meta/train.txt') def test_initialize(self): super().test_initialize() dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'train' dataset = dataset_class(**cfg) self.assertEqual(dataset.split, 'train') self.assertEqual(dataset.data_root, self.root) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # The multi_label option is not implemented not. cfg = {**self.DEFAULT_ARGS, 'multi_label': True} with self.assertRaisesRegex(NotImplementedError, 'not supported'): dataset_class(**cfg) # Warn about ann_file cfg = {**self.DEFAULT_ARGS, 'ann_file': '', 'lazy_init': True} ann_path = osp.join(self.root, self.meta_folder, self.train_file) os.rename(ann_path, ann_path + 'copy') logger = MMLogger.get_current_instance() with self.assertLogs(logger, 'INFO') as log: dataset_class(**cfg) self.assertIn('specify the `ann_file`', log.output[0]) os.rename(ann_path + 'copy', ann_path) # Warn about classes cfg = {**self.DEFAULT_ARGS, 'classes': None} with self.assertLogs(logger, 'WARN') as log: dataset_class(**cfg) self.assertIn('specify the `classes`', log.output[0]) # Test split='train' cfg = {**self.DEFAULT_ARGS, 'split': 'train', 'classes': None} dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 4) class TestPlaces205(TestCustomDataset): DATASET_TYPE = 'Places205' DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.txt') def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # test classes number cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': '', } with self.assertRaisesRegex(AssertionError, r"\(2\) doesn't match .* classes \(205\)"): dataset_class(**cfg) # test override classes cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'classes': ['cat', 'dog'], 'ann_file': '', } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) self.assertEqual(dataset.CLASSES, ('cat', 'dog')) class TestCIFAR10(TestBaseDataset): DATASET_TYPE = 'CIFAR10' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') dataset_class = DATASETS.get(cls.DATASET_TYPE) base_folder = osp.join(cls.root, dataset_class.base_folder) os.mkdir(base_folder) cls.fake_imgs = np.random.randint( 0, 255, size=(6, 3 * 32 * 32), dtype=np.uint8) cls.fake_labels = np.random.randint(0, 10, size=(6, )) cls.fake_classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] batch1 = dict( data=cls.fake_imgs[:2], labels=cls.fake_labels[:2].tolist()) with open(osp.join(base_folder, 'data_batch_1'), 'wb') as f: f.write(pickle.dumps(batch1)) batch2 = dict( data=cls.fake_imgs[2:4], labels=cls.fake_labels[2:4].tolist()) with open(osp.join(base_folder, 'data_batch_2'), 'wb') as f: f.write(pickle.dumps(batch2)) test_batch = dict( data=cls.fake_imgs[4:], fine_labels=cls.fake_labels[4:].tolist()) with open(osp.join(base_folder, 'test_batch'), 'wb') as f: f.write(pickle.dumps(test_batch)) meta = {dataset_class.meta['key']: cls.fake_classes} meta_filename = dataset_class.meta['filename'] with open(osp.join(base_folder, meta_filename), 'wb') as f: f.write(pickle.dumps(meta)) dataset_class.train_list = [['data_batch_1', None], ['data_batch_2', None]] dataset_class.test_list = [['test_batch', None]] dataset_class.meta['md5'] = None def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test with invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test with valid split splits = ['train', 'test'] test_modes = [False, True] for split in splits: for test_mode in test_modes: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split cfg['test_mode'] = test_mode if split == 'train' and test_mode: logger = MMLogger.get_current_instance() with self.assertLogs(logger, 'WARN') as log: dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.test_mode, test_mode) self.assertEqual(dataset.data_root, self.root) self.assertIn('training set will be used', log.output[0]) else: dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.test_mode, test_mode) self.assertEqual(dataset.data_root, self.root) # Test without dataset path with self.assertRaisesRegex(RuntimeError, 'specify the dataset path'): dataset = dataset_class() # Test overriding metainfo by `metainfo` argument cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) # Test overriding metainfo by `classes` argument cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) classes_file = osp.join(ASSETS_ROOT, 'classes.txt') cfg = {**self.DEFAULT_ARGS, 'classes': classes_file} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1}) # Test invalid classes cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)} with self.assertRaisesRegex(ValueError, "type "): dataset_class(**cfg) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 4) self.assertEqual(dataset.CLASSES, dataset_class.METAINFO['classes']) data_info = dataset[0] fake_img = self.fake_imgs[0].reshape(3, 32, 32).transpose(1, 2, 0) np.testing.assert_equal(data_info['img'], fake_img) np.testing.assert_equal(data_info['gt_label'], self.fake_labels[0]) # Test with split='test' cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] fake_img = self.fake_imgs[4].reshape(3, 32, 32).transpose(1, 2, 0) np.testing.assert_equal(data_info['img'], fake_img) np.testing.assert_equal(data_info['gt_label'], self.fake_labels[4]) # Test load meta cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) dataset._metainfo = {} dataset.full_init() self.assertEqual(dataset.CLASSES, self.fake_classes) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) dataset._metainfo = {} dataset.meta['filename'] = 'invalid' with self.assertRaisesRegex(RuntimeError, 'not found or corrupted'): dataset.full_init() # Test automatically download with patch('mmpretrain.datasets.cifar.download_and_extract_archive' ) as mock: cfg = {**self.DEFAULT_ARGS, 'lazy_init': True, 'split': 'test'} dataset = dataset_class(**cfg) dataset.test_list = [['invalid_batch', None]] with self.assertRaisesRegex(AssertionError, 'Download failed'): dataset.full_init() mock.assert_called_once_with( dataset.url, dataset.data_prefix['root'], filename=dataset.filename, md5=dataset.tgz_md5) with self.assertRaisesRegex(RuntimeError, '`download=True`'): cfg = { **self.DEFAULT_ARGS, 'lazy_init': True, 'split': 'test', 'download': False } dataset = dataset_class(**cfg) dataset.test_list = [['test_batch', 'invalid_md5']] dataset.full_init() # Test different backend cfg = { **self.DEFAULT_ARGS, 'lazy_init': True, 'data_prefix': 'http://openmmlab/cifar' } dataset = dataset_class(**cfg) dataset._check_integrity = MagicMock(return_value=False) with self.assertRaisesRegex(RuntimeError, 'http://openmmlab/cifar'): dataset.full_init() def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) self.assertIn(f"Prefix of data: \t{dataset.data_prefix['root']}", repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestCIFAR100(TestCIFAR10): DATASET_TYPE = 'CIFAR100' class TestMultiLabelDataset(TestBaseDataset): DATASET_TYPE = 'MultiLabelDataset' DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='multi_label_ann.json') def test_get_cat_ids(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) cat_ids = dataset.get_cat_ids(0) self.assertTrue(cat_ids, [0]) cat_ids = dataset.get_cat_ids(1) self.assertTrue(cat_ids, [1]) cat_ids = dataset.get_cat_ids(1) self.assertTrue(cat_ids, [0, 1]) class TestVOC(TestBaseDataset): DATASET_TYPE = 'VOC' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir data_root = tmpdir.name cls.DEFAULT_ARGS = dict(data_root=data_root, split='trainval') cls.image_folder = osp.join(data_root, 'JPEGImages') cls.ann_folder = osp.join(data_root, 'Annotations') cls.image_set_folder = osp.join(data_root, 'ImageSets', 'Main') os.makedirs(cls.image_set_folder) os.mkdir(cls.image_folder) os.mkdir(cls.ann_folder) cls.fake_img_paths = [f'{i}' for i in range(6)] cls.fake_labels = [[ np.random.randint(10) for _ in range(np.random.randint(1, 4)) ] for _ in range(6)] cls.fake_classes = [f'C_{i}' for i in range(10)] train_list = [i for i in range(0, 4)] test_list = [i for i in range(4, 6)] with open(osp.join(cls.image_set_folder, 'trainval.txt'), 'w') as f: for train_item in train_list: f.write(str(train_item) + '\n') with open(osp.join(cls.image_set_folder, 'test.txt'), 'w') as f: for test_item in test_list: f.write(str(test_item) + '\n') with open(osp.join(cls.image_set_folder, 'full_path_test.txt'), 'w') as f: for test_item in test_list: f.write(osp.join(cls.image_folder, str(test_item)) + '\n') for train_item in train_list: with open(osp.join(cls.ann_folder, f'{train_item}.xml'), 'w') as f: temple = 'C_{}{}' ann_data = ''.join([ temple.format(label, '0') for label in cls.fake_labels[train_item] ]) # add difficult label ann_data += ''.join([ temple.format(label, '1') for label in cls.fake_labels[train_item] ]) xml_ann_data = f'{ann_data}' f.write(xml_ann_data + '\n') for test_item in test_list: with open(osp.join(cls.ann_folder, f'{test_item}.xml'), 'w') as f: temple = 'C_{}{}' ann_data = ''.join([ temple.format(label, '0') for label in cls.fake_labels[test_item] ]) xml_ann_data = f'{ann_data}' f.write(xml_ann_data + '\n') def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test overriding metainfo by `classes` argument cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) # Test overriding CLASSES by classes file classes_file = osp.join(ASSETS_ROOT, 'classes.txt') cfg = {**self.DEFAULT_ARGS, 'classes': classes_file} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1}) # Test invalid classes cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)} with self.assertRaisesRegex(ValueError, "type "): dataset_class(**cfg) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['trainval', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) # Test split='trainval' and test_mode = True logger = MMLogger.get_current_instance() with self.assertLogs(logger, 'WARN') as log: cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'trainval' cfg['test_mode'] = True dataset = dataset_class(**cfg) self.assertEqual(dataset.split, 'trainval') self.assertEqual(dataset.test_mode, True) self.assertIn('The trainval set will be used', log.output[0]) def test_get_cat_ids(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {'classes': self.fake_classes, **self.DEFAULT_ARGS} dataset = dataset_class(**cfg) cat_ids = dataset.get_cat_ids(0) self.assertIsInstance(cat_ids, list) self.assertIsInstance(cat_ids[0], int) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 4) self.assertEqual(len(dataset.CLASSES), 20) cfg = { 'classes': self.fake_classes, 'lazy_init': True, **self.DEFAULT_ARGS } dataset = dataset_class(**cfg) self.assertIn('Haven\'t been initialized', repr(dataset)) dataset.full_init() self.assertIn(f'Number of samples: \t{len(dataset)}', repr(dataset)) data_info = dataset[0] fake_img_path = osp.join(self.image_folder, self.fake_img_paths[0]) self.assertEqual(data_info['img_path'], f'{fake_img_path}.jpg') self.assertEqual(set(data_info['gt_label']), set(self.fake_labels[0])) # Test with split='test' cfg['split'] = 'test' dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] fake_img_path = osp.join(self.image_folder, self.fake_img_paths[4]) self.assertEqual(data_info['img_path'], f'{fake_img_path}.jpg') self.assertEqual(set(data_info['gt_label']), set(self.fake_labels[4])) # Test with test_mode=True and ann_path = None cfg['split'] = '' cfg['image_set_path'] = 'ImageSets/Main/test.txt' cfg['test_mode'] = True cfg['data_prefix'] = 'JPEGImages' dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] fake_img_path = osp.join(self.image_folder, self.fake_img_paths[4]) self.assertEqual(data_info['img_path'], f'{fake_img_path}.jpg') self.assertEqual(data_info['gt_label'], None) # Test different backend cfg = { **self.DEFAULT_ARGS, 'lazy_init': True, 'data_root': 's3://openmmlab/voc' } petrel_mock = MagicMock() sys.modules['petrel_client'] = petrel_mock dataset = dataset_class(**cfg) petrel_mock.client.Client.assert_called() def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Path of image set: \t{dataset.image_set_path}', repr(dataset)) self.assertIn(f'Prefix of dataset: \t{dataset.data_root}', repr(dataset)) self.assertIn(f'Prefix of annotations: \t{dataset.ann_prefix}', repr(dataset)) self.assertIn(f'Prefix of images: \t{dataset.img_prefix}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestMNIST(TestBaseDataset): DATASET_TYPE = 'MNIST' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name data_prefix = tmpdir.name cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') dataset_class = DATASETS.get(cls.DATASET_TYPE) def rm_suffix(s): return s[:s.rfind('.')] train_image_file = osp.join(data_prefix, rm_suffix(dataset_class.train_list[0][0])) train_label_file = osp.join(data_prefix, rm_suffix(dataset_class.train_list[1][0])) test_image_file = osp.join(data_prefix, rm_suffix(dataset_class.test_list[0][0])) test_label_file = osp.join(data_prefix, rm_suffix(dataset_class.test_list[1][0])) cls.fake_img = np.random.randint(0, 255, size=(28, 28), dtype=np.uint8) cls.fake_label = np.random.randint(0, 10, size=(1, ), dtype=np.uint8) for file in [train_image_file, test_image_file]: magic = b'\x00\x00\x08\x03' # num_dims = 3, type = uint8 head = b'\x00\x00\x00\x01' + b'\x00\x00\x00\x1c' * 2 # (1, 28, 28) data = magic + head + cls.fake_img.flatten().tobytes() with open(file, 'wb') as f: f.write(data) for file in [train_label_file, test_label_file]: magic = b'\x00\x00\x08\x01' # num_dims = 3, type = uint8 head = b'\x00\x00\x00\x01' # (1, ) data = magic + head + cls.fake_label.tobytes() with open(file, 'wb') as f: f.write(data) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test with invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test with valid split splits = ['train', 'test'] test_modes = [False, True] for split in splits: for test_mode in test_modes: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split cfg['test_mode'] = test_mode if split == 'train' and test_mode: logger = MMLogger.get_current_instance() with self.assertLogs(logger, 'WARN') as log: dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.test_mode, test_mode) self.assertEqual(dataset.data_root, self.root) self.assertIn('training set will be used', log.output[0]) else: dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.test_mode, test_mode) self.assertEqual(dataset.data_root, self.root) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 1) self.assertEqual(dataset.CLASSES, dataset_class.METAINFO['classes']) data_info = dataset[0] np.testing.assert_equal(data_info['img'], self.fake_img) np.testing.assert_equal(data_info['gt_label'], self.fake_label) # Test with split='test' cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 1) data_info = dataset[0] np.testing.assert_equal(data_info['img'], self.fake_img) np.testing.assert_equal(data_info['gt_label'], self.fake_label) # Test automatically download with patch('mmpretrain.datasets.mnist.download_and_extract_archive' ) as mock: cfg = {**self.DEFAULT_ARGS, 'lazy_init': True, 'split': 'test'} dataset = dataset_class(**cfg) dataset.train_list = [['invalid_train_file', None]] dataset.test_list = [['invalid_test_file', None]] with self.assertRaisesRegex(AssertionError, 'Download failed'): dataset.full_init() calls = [ call( osp.join(dataset.url_prefix, dataset.train_list[0][0]), download_root=dataset.data_prefix['root'], filename=dataset.train_list[0][0], md5=None), call( osp.join(dataset.url_prefix, dataset.test_list[0][0]), download_root=dataset.data_prefix['root'], filename=dataset.test_list[0][0], md5=None) ] mock.assert_has_calls(calls) with self.assertRaisesRegex(RuntimeError, '`download=True`'): cfg = { **self.DEFAULT_ARGS, 'lazy_init': True, 'split': 'test', 'download': False } dataset = dataset_class(**cfg) dataset._check_exists = MagicMock(return_value=False) dataset.full_init() # Test different backend cfg = { **self.DEFAULT_ARGS, 'lazy_init': True, 'data_prefix': 'http://openmmlab/mnist' } dataset = dataset_class(**cfg) dataset._check_exists = MagicMock(return_value=False) with self.assertRaisesRegex(RuntimeError, 'http://openmmlab/mnist'): dataset.full_init() def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) self.assertIn(f"Prefix of data: \t{dataset.data_prefix['root']}", repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class FashionMNIST(TestMNIST): DATASET_TYPE = 'FashionMNIST' class TestCUB(TestBaseDataset): DATASET_TYPE = 'CUB' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.ann_file = 'images.txt' cls.image_folder = 'images' cls.image_class_labels_file = 'image_class_labels.txt' cls.train_test_split_file = 'train_test_split.txt' cls.DEFAULT_ARGS = dict( data_root=cls.root, split='train', test_mode=False) with open(osp.join(cls.root, cls.ann_file), 'w') as f: f.write('\n'.join([ '1 1.txt', '2 2.txt', '3 3.txt', ])) with open(osp.join(cls.root, cls.image_class_labels_file), 'w') as f: f.write('\n'.join([ '1 2', '2 3', '3 1', ])) with open(osp.join(cls.root, cls.train_test_split_file), 'w') as f: f.write('\n'.join([ '1 0', '2 1', '3 1', ])) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test with invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test with valid split splits = ['train', 'test'] test_modes = [False, True] for split in splits: for test_mode in test_modes: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split cfg['test_mode'] = test_mode if split == 'train' and test_mode: logger = MMLogger.get_current_instance() with self.assertLogs(logger, 'WARN') as log: dataset = dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.test_mode, test_mode) self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, osp.join(self.root, self.ann_file)) self.assertIn('training set will be used', log.output[0]) else: dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.test_mode, test_mode) self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, osp.join(self.root, self.ann_file)) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '2.txt')) self.assertEqual(data_info['gt_label'], 3 - 1) # # Test with split='test' cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 1) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '1.txt')) self.assertEqual(data_info['gt_label'], 2 - 1) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestMultiTaskDataset(TestCase): DATASET_TYPE = 'MultiTaskDataset' DEFAULT_ARGS = dict( data_root=ASSETS_ROOT, ann_file=osp.join(ASSETS_ROOT, 'multi-task.json'), pipeline=[]) def test_metainfo(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) metainfo = {'tasks': ['gender', 'wear']} self.assertDictEqual(dataset.metainfo, metainfo) self.assertFalse(dataset.test_mode) def test_parse_data_info(self): dataset_class = DATASETS.get(self.DATASET_TYPE) dataset = dataset_class(**self.DEFAULT_ARGS) data = dataset.parse_data_info({ 'img_path': 'a.jpg', 'gt_label': { 'gender': 0 } }) self.assertDictContainsSubset( { 'img_path': os.path.join(ASSETS_ROOT, 'a.jpg'), 'gt_label': { 'gender': 0 } }, data) np.testing.assert_equal(data['gt_label']['gender'], 0) # Test missing path with self.assertRaisesRegex(AssertionError, 'have `img_path` field'): dataset.parse_data_info( {'gt_label': { 'gender': 0, 'wear': [1, 0, 1, 0] }}) def test_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) dataset = dataset_class(**self.DEFAULT_ARGS) task_doc = ('For 2 tasks\n gender \n wear ') self.assertIn(task_doc, repr(dataset)) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) data = dataset.load_data_list(self.DEFAULT_ARGS['ann_file']) self.assertIsInstance(data, list) np.testing.assert_equal(len(data), 3) np.testing.assert_equal(data[0]['gt_label'], {'gender': 0}) np.testing.assert_equal(data[1]['gt_label'], { 'gender': 0, 'wear': [1, 0, 1, 0] }) class TestInShop(TestBaseDataset): DATASET_TYPE = 'InShop' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.list_eval_partition = 'Eval/list_eval_partition.txt' cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') cls.ann_file = osp.join(cls.root, cls.list_eval_partition) os.makedirs(osp.join(cls.root, 'Eval')) with open(cls.ann_file, 'w') as f: f.write('\n'.join([ '8', 'image_name item_id evaluation_status', f'{osp.join("img", "02_1_front.jpg")} id_00000002 train', f'{osp.join("img", "02_2_side.jpg")} id_00000002 train', f'{osp.join("img", "12_3_back.jpg")} id_00007982 gallery', f'{osp.join("img", "12_7_addition.jpg")} id_00007982 gallery', f'{osp.join("img", "13_1_front.jpg")} id_00007982 query', f'{osp.join("img", "13_2_side.jpg")} id_00007983 gallery', f'{osp.join("img", "13_3_back.jpg")} id_00007983 query ', f'{osp.join("img", "13_7_additional.jpg")} id_00007983 query', ])) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test with mode=train cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertEqual(dataset.split, 'train') self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, self.ann_file) # Test with mode=query cfg = {**self.DEFAULT_ARGS, 'split': 'query'} dataset = dataset_class(**cfg) self.assertEqual(dataset.split, 'query') self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, self.ann_file) # Test with mode=gallery cfg = {**self.DEFAULT_ARGS, 'split': 'gallery'} dataset = dataset_class(**cfg) self.assertEqual(dataset.split, 'gallery') self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, self.ann_file) # Test with mode=other cfg = {**self.DEFAULT_ARGS, 'split': 'other'} with self.assertRaisesRegex(AssertionError, "'split' of `InS"): dataset_class(**cfg) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test with mode=train cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual( data_info['img_path'], os.path.join(self.root, 'Img', 'img', '02_1_front.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with mode=query cfg = {**self.DEFAULT_ARGS, 'split': 'query'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual( data_info['img_path'], os.path.join(self.root, 'Img', 'img', '13_1_front.jpg')) self.assertEqual(data_info['gt_label'], [0, 1]) # Test with mode=gallery cfg = {**self.DEFAULT_ARGS, 'split': 'gallery'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual( data_info['img_path'], os.path.join(self.root, 'Img', 'img', '12_3_back.jpg')) self.assertEqual(data_info['sample_idx'], 0) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestFlowers102(TestBaseDataset): DATASET_TYPE = 'Flowers102' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') cls.ann_file = osp.join(cls.root, 'imagelabels.mat') cls.train_test_split_file = osp.join(cls.root, 'setid.mat') mat4py.savemat(cls.ann_file, {'labels': [1, 1, 2, 2, 2, 3, 3, 4, 4, 5]}) mat4py.savemat(cls.train_test_split_file, { 'trnid': [1, 3, 5], 'valid': [7, 9], 'tstid': [2, 4, 6, 8, 10], }) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'val', 'trainval', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, self.ann_file) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test with split="train" cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'jpg', 'image_00001.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split="val" cfg = {**self.DEFAULT_ARGS, 'split': 'val'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'jpg', 'image_00007.jpg')) self.assertEqual(data_info['gt_label'], 2) # Test with split="trainval" cfg = {**self.DEFAULT_ARGS, 'split': 'trainval'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 5) data_info = dataset[2] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'jpg', 'image_00005.jpg')) self.assertEqual(data_info['gt_label'], 1) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 5) data_info = dataset[2] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'jpg', 'image_00006.jpg')) self.assertEqual(data_info['gt_label'], 2) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestOxfordIIITPet(TestBaseDataset): DATASET_TYPE = 'OxfordIIITPet' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.trainval_file = 'trainval.txt' cls.image_folder = 'images' cls.meta_folder = 'annotations' cls.test_file = 'test.txt' os.mkdir(osp.join(cls.root, cls.meta_folder)) cls.DEFAULT_ARGS = dict(data_root=cls.root, split='trainval') with open(osp.join(cls.root, cls.meta_folder, cls.trainval_file), 'w') as f: f.write('\n'.join([ 'Abyssinian_100 1 1 1', 'american_bulldog_100 2 2 1', 'basset_hound_126 4 2 3', ])) with open(osp.join(cls.root, cls.meta_folder, cls.test_file), 'w') as f: f.write('\n'.join([ 'Abyssinian_204 1 1 1', 'american_bulldog_208 2 2 1', ])) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['trainval', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual( data_info['img_path'], osp.join(self.root, self.image_folder, 'Abyssinian_100.jpg')) self.assertEqual(data_info['gt_label'], 1 - 1) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual( data_info['img_path'], osp.join(self.root, self.image_folder, 'Abyssinian_204.jpg')) self.assertEqual(data_info['gt_label'], 1 - 1) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestDTD(TestBaseDataset): DATASET_TYPE = 'DTD' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') cls.meta_folder = 'imdb' os.makedirs(osp.join(cls.root, cls.meta_folder)) cls.ann_file = osp.join(cls.root, cls.meta_folder, 'imdb.mat') mat4py.savemat( cls.ann_file, { 'images': { 'name': [ '1.jpg', '2.jpg', '3.jpg', '4.jpg', '5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg', '10.jpg' ], 'class': [1, 1, 2, 2, 2, 3, 3, 4, 4, 5], 'set': [1, 2, 3, 1, 2, 3, 1, 2, 3, 1] } }) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'val', 'trainval', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, self.ann_file) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test with split="train" cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 4) data_info = dataset[0] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'images', '1.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split="val" cfg = {**self.DEFAULT_ARGS, 'split': 'val'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'images', '2.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split="trainval" cfg = {**self.DEFAULT_ARGS, 'split': 'trainval'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 7) data_info = dataset[2] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'images', '4.jpg')) self.assertEqual(data_info['gt_label'], 1) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], os.path.join(self.root, 'images', '3.jpg')) self.assertEqual(data_info['gt_label'], 1) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestFGVCAircraft(TestBaseDataset): DATASET_TYPE = 'FGVCAircraft' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name os.makedirs(osp.join(cls.root, 'data')) cls.train_file = osp.join('data', 'images_variant_train.txt') cls.val_file = osp.join('data', 'images_variant_val.txt') cls.trainval_file = osp.join('data', 'images_variant_trainval.txt') cls.test_file = osp.join('data', 'images_variant_test.txt') cls.image_folder = osp.join('data', 'images') cls.DEFAULT_ARGS = dict(data_root=cls.root, split='trainval') with open(osp.join(cls.root, cls.train_file), 'w') as f: f.write('\n'.join([ '1025794 707-320', '1019011 727-200', ])) with open(osp.join(cls.root, cls.val_file), 'w') as f: f.write('\n'.join([ '0209554 737-200', ])) with open(osp.join(cls.root, cls.trainval_file), 'w') as f: f.write('\n'.join([ '1025794 707-320', '1019011 727-200', '0209554 737-200', ])) with open(osp.join(cls.root, cls.test_file), 'w') as f: f.write('\n'.join([ '1514522 707-320', '0116175 727-200', '0713752 737-200', '2126017 737-300', ])) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'val', 'trainval', 'test'] ann_files = [ self.train_file, self.val_file, self.trainval_file, self.test_file ] for i, split in enumerate(splits): cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, osp.join(self.root, ann_files[i])) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior (split="trainval") dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '1025794.jpg')) self.assertEqual(data_info['gt_label'], 0) # # Test with split="train" cfg = {**self.DEFAULT_ARGS, 'split': 'train'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '1025794.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split="val" cfg = {**self.DEFAULT_ARGS, 'split': 'val'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 1) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '0209554.jpg')) self.assertEqual(data_info['gt_label'], 2) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 4) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '1514522.jpg')) self.assertEqual(data_info['gt_label'], 0) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestStanfordCars(TestBaseDataset): DATASET_TYPE = 'StanfordCars' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.ann_file = osp.join(cls.root, 'cars_annos.mat') cls.meta_folder = 'devkit' cls.train_ann_file = osp.join(cls.root, cls.meta_folder, 'cars_train_annos.mat') cls.test_ann_file = osp.join(cls.root, cls.meta_folder, 'cars_test_annos_withlabels.mat') cls.train_folder = 'cars_train' cls.test_folder = 'cars_test' os.makedirs(osp.join(cls.root, cls.meta_folder)) cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') mat4py.savemat( cls.ann_file, { 'annotations': { 'relative_im_path': ['car_ims/001.jpg', 'car_ims/002.jpg', 'car_ims/003.jpg'], 'class': [1, 2, 3], 'test': [0, 0, 1] } }) mat4py.savemat( cls.train_ann_file, { 'annotations': { 'fname': ['001.jpg', '002.jpg', '012.jpg'], 'class': [10, 15, 150], } }) mat4py.savemat( cls.test_ann_file, { 'annotations': { 'fname': ['025.jpg', '111.jpg', '222.jpg'], 'class': [150, 1, 15], } }) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test first way # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, self.ann_file) # Test second way os.rename(self.ann_file, self.ann_file + 'copy') # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'train' dataset = dataset_class(**cfg) self.assertEqual(dataset.split, 'train') self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, osp.join(self.meta_folder, self.train_ann_file)) # Test valid splits cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'test' dataset = dataset_class(**cfg) self.assertEqual(dataset.split, 'test') self.assertEqual(dataset.data_root, self.root) self.assertEqual(dataset.ann_file, osp.join(self.meta_folder, self.test_ann_file)) # wrong dataset organization os.rename(self.train_ann_file, self.train_ann_file + 'copy') os.rename(self.test_ann_file, self.test_ann_file + 'copy') with self.assertRaisesRegex(RuntimeError, 'The dataset is incorrectly organized'): cfg = {**self.DEFAULT_ARGS} dataset_class(**cfg) with self.assertRaisesRegex(RuntimeError, 'The dataset is incorrectly organized'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'test' dataset_class(**cfg) os.rename(self.train_ann_file + 'copy', self.train_ann_file) os.rename(self.test_ann_file + 'copy', self.test_ann_file) os.rename(self.ann_file + 'copy', self.ann_file) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test first way # Test default behavior assert osp.exists(osp.join(self.root, 'cars_annos.mat')), osp.join( self.root, 'cars_annos.mat') dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 2) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, 'car_ims/001.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 1) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, 'car_ims/003.jpg')) self.assertEqual(data_info['gt_label'], 2) # Test second way os.rename(self.ann_file, self.ann_file + 'copy') # Test with split="train" cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.train_folder, '001.jpg')) self.assertEqual(data_info['gt_label'], 9) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.test_folder, '025.jpg')) self.assertEqual(data_info['gt_label'], 149) os.rename(self.ann_file + 'copy', self.ann_file) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestCaltech101(TestBaseDataset): DATASET_TYPE = 'Caltech101' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.image_folder = '101_ObjectCategories' cls.meta_folder = 'meta' cls.train_file = 'train.txt' cls.test_file = 'test.txt' cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') os.makedirs(osp.join(cls.root, cls.meta_folder)) with open(osp.join(cls.root, cls.meta_folder, cls.train_file), 'w') as f: f.write('\n'.join([ '1.jpg 0', '2.jpg 1', '3.jpg 2', ])) with open(osp.join(cls.root, cls.meta_folder, cls.test_file), 'w') as f: f.write('\n'.join([ '100.jpg 99', '101.jpg 100', '102.jpg 101', '103.jpg 101', ])) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '1.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 4) data_info = dataset[0] self.assertEqual(data_info['img_path'], osp.join(self.root, self.image_folder, '100.jpg')) self.assertEqual(data_info['gt_label'], 99) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestFood101(TestBaseDataset): DATASET_TYPE = 'Food101' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.image_folder = 'images' cls.meta_folder = 'meta' cls.train_file = 'train.txt' cls.test_file = 'test.txt' os.makedirs(osp.join(cls.root, cls.meta_folder)) cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') with open(osp.join(cls.root, cls.meta_folder, cls.train_file), 'w') as f: f.write('\n'.join([ 'apple_pie/0001', 'baby_back_ribs/0002', 'baklava/0003', ])) with open(osp.join(cls.root, cls.meta_folder, cls.test_file), 'w') as f: f.write('\n'.join([ 'beef_carpaccio/0004', 'beef_tartare/0005', 'beet_salad/0006', ])) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual( data_info['img_path'], osp.join(self.root, self.image_folder, 'apple_pie', '0001.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split="test" cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual( data_info['img_path'], osp.join(self.root, self.image_folder, 'beef_carpaccio', '0004.jpg')) self.assertEqual(data_info['gt_label'], 3) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestSUN397(TestBaseDataset): DATASET_TYPE = 'SUN397' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.root = tmpdir.name cls.train_file = 'Training_01.txt' cls.test_file = 'Testing_01.txt' cls.data_prefix = 'SUN397' cls.meta_folder = 'Partitions' os.makedirs(osp.join(cls.root, cls.meta_folder)) cls.DEFAULT_ARGS = dict(data_root=cls.root, split='train') with open(osp.join(cls.root, cls.meta_folder, cls.train_file), 'w') as f: f.write('\n'.join([ '/a/abbey/sun_aqswjsnjlrfzzhiz.jpg', '/a/airplane_cabin/sun_blczihbhbntqccux.jpg', '/a/assembly_line/sun_ajckcfldgdrdjogj.jpg', ])) with open(osp.join(cls.root, cls.meta_folder, cls.test_file), 'w') as f: f.write('\n'.join([ '/a/abbey/sun_ajkqrqitspwywirx.jpg', '/a/airplane_cabin/sun_aqylhacwdsqfjuuu.jpg', '/a/auto_factory/sun_apfsprenzdnzbhmt.jpg', '/b/baggage_claim/sun_avittiqqaiibgcau.jpg', ])) def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test invalid split with self.assertRaisesRegex(AssertionError, 'The split must be'): cfg = {**self.DEFAULT_ARGS} cfg['split'] = 'unknown' dataset_class(**cfg) # Test valid splits splits = ['train', 'test'] for split in splits: cfg = {**self.DEFAULT_ARGS} cfg['split'] = split dataset = dataset_class(**cfg) self.assertEqual(dataset.split, split) self.assertEqual(dataset.data_root, self.root) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 3) data_info = dataset[0] self.assertEqual( data_info['img_path'], osp.join(self.root, self.data_prefix, 'a/abbey/sun_aqswjsnjlrfzzhiz.jpg')) self.assertEqual(data_info['gt_label'], 0) # Test with split='test' cfg = {**self.DEFAULT_ARGS, 'split': 'test'} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 4) data_info = dataset[-1] self.assertEqual( data_info['img_path'], osp.join(self.root, self.data_prefix, 'b/baggage_claim/sun_avittiqqaiibgcau.jpg')) self.assertEqual(data_info['gt_label'], 26) def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS} dataset = dataset_class(**cfg) self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup()