Collections: - Name: MViT V2 Metadata: Architecture: - Attention Dropout - Convolution - Dense Connections - GELU - Layer Normalization - Scaled Dot-Product Attention - Attention Pooling Paper: URL: http://openaccess.thecvf.com//content/CVPR2022/papers/Li_MViTv2_Improved_Multiscale_Vision_Transformers_for_Classification_and_Detection_CVPR_2022_paper.pdf Title: 'MViTv2: Improved Multiscale Vision Transformers for Classification and Detection' README: configs/mvit/README.md Code: URL: https://github.com/open-mmlab/mmclassification/blob/v0.24.0/mmcls/models/backbones/mvit.py Version: v0.24.0 Models: - Name: mvitv2-tiny_3rdparty_in1k In Collection: MViT V2 Metadata: FLOPs: 4703510768 Parameters: 24173320 Training Data: - ImageNet-1k Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 82.33 Top 5 Accuracy: 96.15 Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-tiny_3rdparty_in1k_20220722-db7beeef.pth Converted From: Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth Code: https://github.com/facebookresearch/mvit Config: configs/mvit/mvitv2-tiny_8xb256_in1k.py - Name: mvitv2-small_3rdparty_in1k In Collection: MViT V2 Metadata: FLOPs: 6997555136 Parameters: 34870216 Training Data: - ImageNet-1k Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 83.63 Top 5 Accuracy: 96.51 Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-small_3rdparty_in1k_20220722-986bd741.pth Converted From: Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth Code: https://github.com/facebookresearch/mvit Config: configs/mvit/mvitv2-small_8xb256_in1k.py - Name: mvitv2-base_3rdparty_in1k In Collection: MViT V2 Metadata: FLOPs: 10157964400 Parameters: 51472744 Training Data: - ImageNet-1k Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 84.34 Top 5 Accuracy: 96.86 Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-base_3rdparty_in1k_20220722-9c4f0a17.pth Converted From: Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth Code: https://github.com/facebookresearch/mvit Config: configs/mvit/mvitv2-base_8xb256_in1k.py - Name: mvitv2-large_3rdparty_in1k In Collection: MViT V2 Metadata: FLOPs: 43868151412 Parameters: 217992952 Training Data: - ImageNet-1k Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 85.25 Top 5 Accuracy: 97.14 Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-large_3rdparty_in1k_20220722-2b57b983.pth Converted From: Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth Code: https://github.com/facebookresearch/mvit Config: configs/mvit/mvitv2-large_8xb256_in1k.py