# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import re import matplotlib.pyplot as plt import numpy as np from mmcls.utils import load_json_log TEST_METRICS = ('precision', 'recall', 'f1_score', 'support', 'mAP', 'CP', 'CR', 'CF1', 'OP', 'OR', 'OF1', 'accuracy') def cal_train_time(log_dicts, args): """Compute the average time per training iteration.""" for i, log_dict in enumerate(log_dicts): print(f'{"-" * 5}Analyze train time of {args.json_logs[i]}{"-" * 5}') all_times = [] for epoch in log_dict.keys(): if args.include_outliers: all_times.append(log_dict[epoch]['time']) else: all_times.append(log_dict[epoch]['time'][1:]) all_times = np.array(all_times) epoch_ave_time = all_times.mean(-1) slowest_epoch = epoch_ave_time.argmax() fastest_epoch = epoch_ave_time.argmin() std_over_epoch = epoch_ave_time.std() print(f'slowest epoch {slowest_epoch + 1}, ' f'average time is {epoch_ave_time[slowest_epoch]:.4f}') print(f'fastest epoch {fastest_epoch + 1}, ' f'average time is {epoch_ave_time[fastest_epoch]:.4f}') print(f'time std over epochs is {std_over_epoch:.4f}') print(f'average iter time: {np.mean(all_times):.4f} s/iter') print() def get_legends(args): """if legend is None, use {filename}_{key} as legend.""" legend = args.legend if legend is None: legend = [] for json_log in args.json_logs: for metric in args.keys: # remove '.json' in the end of log names basename = os.path.basename(json_log)[:-5] if basename.endswith('.log'): basename = basename[:-4] legend.append(f'{basename}_{metric}') assert len(legend) == (len(args.json_logs) * len(args.keys)) return legend def plot_phase_train(metric, log_dict, epochs, curve_label, json_log): """plot phase of train cruve.""" if metric not in log_dict[epochs[0]]: raise KeyError(f'{json_log} does not contain metric {metric}' f' in train mode') xs, ys = [], [] for epoch in epochs: iters = log_dict[epoch]['iter'] if log_dict[epoch]['mode'][-1] == 'val': iters = iters[:-1] num_iters_per_epoch = iters[-1] assert len(iters) > 0, ( 'The training log is empty, please try to reduce the ' 'interval of log in config file.') xs.append(np.array(iters) / num_iters_per_epoch + (epoch - 1)) ys.append(np.array(log_dict[epoch][metric][:len(iters)])) xs = np.concatenate(xs) ys = np.concatenate(ys) plt.xlabel('Epochs') plt.plot(xs, ys, label=curve_label, linewidth=0.75) def plot_phase_val(metric, log_dict, epochs, curve_label, json_log): """plot phase of val cruves.""" # some epoch may not have evaluation. as [(train, 5),(val, 1)] xs = [e for e in epochs if metric in log_dict[e]] ys = [log_dict[e][metric] for e in xs if metric in log_dict[e]] assert len(xs) > 0, (f'{json_log} does not contain metric {metric}') plt.xlabel('Epochs') plt.plot(xs, ys, label=curve_label, linewidth=0.75) def plot_curve_helper(log_dicts, metrics, args, legend): """plot curves from log_dicts by metrics.""" num_metrics = len(metrics) for i, log_dict in enumerate(log_dicts): epochs = list(log_dict.keys()) for j, metric in enumerate(metrics): json_log = args.json_logs[i] print(f'plot curve of {json_log}, metric is {metric}') curve_label = legend[i * num_metrics + j] if any(m in metric for m in TEST_METRICS): plot_phase_val(metric, log_dict, epochs, curve_label, json_log) else: plot_phase_train(metric, log_dict, epochs, curve_label, json_log) plt.legend() def plot_curve(log_dicts, args): """Plot train metric-iter graph.""" # set backend and style if args.backend is not None: plt.switch_backend(args.backend) try: import seaborn as sns sns.set_style(args.style) except ImportError: print("Attention: The plot style won't be applied because 'seaborn' " 'package is not installed, please install it if you want better ' 'show style.') # set plot window size wind_w, wind_h = args.window_size.split('*') wind_w, wind_h = int(wind_w), int(wind_h) plt.figure(figsize=(wind_w, wind_h)) # get legends and metrics legends = get_legends(args) metrics = args.keys # plot curves from log_dicts by metrics plot_curve_helper(log_dicts, metrics, args, legends) # set title and show or save if args.title is not None: plt.title(args.title) if args.out is None: plt.show() else: print(f'save curve to: {args.out}') plt.savefig(args.out) plt.cla() def add_plot_parser(subparsers): parser_plt = subparsers.add_parser( 'plot_curve', help='parser for plotting curves') parser_plt.add_argument( 'json_logs', type=str, nargs='+', help='path of train log in json format') parser_plt.add_argument( '--keys', type=str, nargs='+', default=['loss'], help='the metric that you want to plot') parser_plt.add_argument('--title', type=str, help='title of figure') parser_plt.add_argument( '--legend', type=str, nargs='+', default=None, help='legend of each plot') parser_plt.add_argument( '--backend', type=str, default=None, help='backend of plt') parser_plt.add_argument( '--style', type=str, default='whitegrid', help='style of plt') parser_plt.add_argument('--out', type=str, default=None) parser_plt.add_argument( '--window-size', default='12*7', help='size of the window to display images, in format of "$W*$H".') def add_time_parser(subparsers): parser_time = subparsers.add_parser( 'cal_train_time', help='parser for computing the average time per training iteration') parser_time.add_argument( 'json_logs', type=str, nargs='+', help='path of train log in json format') parser_time.add_argument( '--include-outliers', action='store_true', help='include the first value of every epoch when computing ' 'the average time') def parse_args(): parser = argparse.ArgumentParser(description='Analyze Json Log') # currently only support plot curve and calculate average train time subparsers = parser.add_subparsers(dest='task', help='task parser') add_plot_parser(subparsers) add_time_parser(subparsers) args = parser.parse_args() if hasattr(args, 'window_size') and args.window_size != '': assert re.match(r'\d+\*\d+', args.window_size), \ "'window-size' must be in format 'W*H'." return args def main(): args = parse_args() json_logs = args.json_logs for json_log in json_logs: assert json_log.endswith('.json') log_dicts = [load_json_log(json_log) for json_log in json_logs] eval(args.task)(log_dicts, args) if __name__ == '__main__': main()