# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import itertools import os import re import sys import warnings from pathlib import Path from typing import List import cv2 import mmcv import numpy as np from mmcv import Config, DictAction, ProgressBar from mmcls.core import visualization as vis from mmcls.datasets.builder import PIPELINES, build_dataset, build_from_cfg from mmcls.models.utils import to_2tuple # text style bright_style, reset_style = '\x1b[1m', '\x1b[0m' red_text, blue_text = '\x1b[31m', '\x1b[34m' white_background = '\x1b[107m' def parse_args(): parser = argparse.ArgumentParser( description='Visualize a Dataset Pipeline') parser.add_argument('config', help='config file path') parser.add_argument( '--skip-type', type=str, nargs='*', default=['ToTensor', 'Normalize', 'ImageToTensor', 'Collect'], help='the pipelines to skip when visualizing') parser.add_argument( '--output-dir', default='', type=str, help='folder to save output pictures, if not set, do not save.') parser.add_argument( '--phase', default='train', type=str, choices=['train', 'test', 'val'], help='phase of dataset to visualize, accept "train" "test" and "val".' ' Default train.') parser.add_argument( '--number', type=int, default=sys.maxsize, help='number of images selected to visualize, must bigger than 0. if ' 'the number is bigger than length of dataset, show all the images in ' 'dataset; default "sys.maxsize", show all images in dataset') parser.add_argument( '--mode', default='concat', type=str, choices=['original', 'transformed', 'concat', 'pipeline'], help='display mode; display original pictures or transformed pictures' ' or comparison pictures. "original" means show images load from disk' '; "transformed" means to show images after transformed; "concat" ' 'means show images stitched by "original" and "output" images. ' '"pipeline" means show all the intermediate images. Default concat.') parser.add_argument( '--show', default=False, action='store_true', help='whether to display images in pop-up window. Default False.') parser.add_argument( '--adaptive', default=False, action='store_true', help='whether to automatically adjust the visualization image size') parser.add_argument( '--min-edge-length', default=200, type=int, help='the min edge length when visualizing images, used when ' '"--adaptive" is true. Default 200.') parser.add_argument( '--max-edge-length', default=800, type=int, help='the max edge length when visualizing images, used when ' '"--adaptive" is true. Default 1000.') parser.add_argument( '--bgr2rgb', default=False, action='store_true', help='flip the color channel order of images') parser.add_argument( '--window-size', default='12*7', help='size of the window to display images, in format of "$W*$H".') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--show-options', nargs='+', action=DictAction, help='custom options for display. key-value pair in xxx=yyy. options ' 'in `mmcls.core.visualization.ImshowInfosContextManager.put_img_infos`' ) args = parser.parse_args() assert args.number > 0, "'args.number' must be larger than zero." if args.window_size != '': assert re.match(r'\d+\*\d+', args.window_size), \ "'window-size' must be in format 'W*H'." if args.output_dir == '' and not args.show: raise ValueError("if '--output-dir' and '--show' are not set, " 'nothing will happen when the program running.') if args.show_options is None: args.show_options = {} return args def retrieve_data_cfg(config_path, skip_type, cfg_options, phase): cfg = Config.fromfile(config_path) if cfg_options is not None: cfg.merge_from_dict(cfg_options) data_cfg = cfg.data[phase] while 'dataset' in data_cfg: data_cfg = data_cfg['dataset'] data_cfg['pipeline'] = [ x for x in data_cfg.pipeline if x['type'] not in skip_type ] return cfg def build_dataset_pipelines(cfg, phase): """build dataset and pipeline from config. Separate the pipeline except 'LoadImageFromFile' step if 'LoadImageFromFile' in the pipeline. """ data_cfg = cfg.data[phase] loadimage_pipeline = [] if len(data_cfg.pipeline ) != 0 and data_cfg.pipeline[0]['type'] == 'LoadImageFromFile': loadimage_pipeline.append(data_cfg.pipeline.pop(0)) origin_pipeline = data_cfg.pipeline data_cfg.pipeline = loadimage_pipeline dataset = build_dataset(data_cfg) pipelines = { pipeline_cfg['type']: build_from_cfg(pipeline_cfg, PIPELINES) for pipeline_cfg in origin_pipeline } return dataset, pipelines def prepare_imgs(args, imgs: List[np.ndarray], steps=None): """prepare the showing picture.""" ori_shapes = [img.shape for img in imgs] # adaptive adjustment to rescale pictures if args.adaptive: for i, img in enumerate(imgs): imgs[i] = adaptive_size(img, args.min_edge_length, args.max_edge_length) else: # if src image is too large or too small, # warning a "--adaptive" message. for ori_h, ori_w, _ in ori_shapes: if (args.min_edge_length > ori_h or args.min_edge_length > ori_w or args.max_edge_length < ori_h or args.max_edge_length < ori_w): msg = red_text msg += 'The visualization picture is too small or too large to' msg += ' put text information on it, please add ' msg += bright_style + red_text + white_background msg += '"--adaptive"' msg += reset_style + red_text msg += ' to adaptively rescale the showing pictures' msg += reset_style warnings.warn(msg) if len(imgs) == 1: return imgs[0] else: return concat_imgs(imgs, steps, ori_shapes) def concat_imgs(imgs, steps, ori_shapes): """Concat list of pictures into a single big picture, align height here.""" show_shapes = [img.shape for img in imgs] show_heights = [shape[0] for shape in show_shapes] show_widths = [shape[1] for shape in show_shapes] max_height = max(show_heights) text_height = 20 font_size = 0.5 pic_horizontal_gap = min(show_widths) // 10 for i, img in enumerate(imgs): cur_height = show_heights[i] pad_height = max_height - cur_height pad_top, pad_bottom = to_2tuple(pad_height // 2) # handle instance that the pad_height is an odd number if pad_height % 2 == 1: pad_top = pad_top + 1 pad_bottom += text_height * 3 # keep pxs to put step information text pad_left, pad_right = to_2tuple(pic_horizontal_gap) # make border img = cv2.copyMakeBorder( img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT, value=(255, 255, 255)) # put transform phase information in the bottom imgs[i] = cv2.putText( img=img, text=steps[i], org=(pic_horizontal_gap, max_height + text_height // 2), fontFace=cv2.FONT_HERSHEY_TRIPLEX, fontScale=font_size, color=(255, 0, 0), lineType=1) # put image size information in the bottom imgs[i] = cv2.putText( img=img, text=str(ori_shapes[i]), org=(pic_horizontal_gap, max_height + int(text_height * 1.5)), fontFace=cv2.FONT_HERSHEY_TRIPLEX, fontScale=font_size, color=(255, 0, 0), lineType=1) # Height alignment for concatenating board = np.concatenate(imgs, axis=1) return board def adaptive_size(image, min_edge_length, max_edge_length, src_shape=None): """rescale image if image is too small to put text like cifar.""" assert min_edge_length >= 0 and max_edge_length >= 0 assert max_edge_length >= min_edge_length src_shape = image.shape if src_shape is None else src_shape image_h, image_w, _ = src_shape if image_h < min_edge_length or image_w < min_edge_length: image = mmcv.imrescale( image, min(min_edge_length / image_h, min_edge_length / image_h)) if image_h > max_edge_length or image_w > max_edge_length: image = mmcv.imrescale( image, max(max_edge_length / image_h, max_edge_length / image_w)) return image def get_display_img(args, item, pipelines): """get image to display.""" # srcs picture could be in RGB or BGR order due to different backends. if args.bgr2rgb: item['img'] = mmcv.bgr2rgb(item['img']) src_image = item['img'].copy() pipeline_images = [src_image] # get intermediate images through pipelines if args.mode in ['transformed', 'concat', 'pipeline']: for pipeline in pipelines.values(): item = pipeline(item) trans_image = copy.deepcopy(item['img']) trans_image = np.ascontiguousarray(trans_image, dtype=np.uint8) pipeline_images.append(trans_image) # concatenate images to be showed according to mode if args.mode == 'original': image = prepare_imgs(args, [src_image], ['src']) elif args.mode == 'transformed': image = prepare_imgs(args, [pipeline_images[-1]], ['transformed']) elif args.mode == 'concat': steps = ['src', 'transformed'] image = prepare_imgs(args, [pipeline_images[0], pipeline_images[-1]], steps) elif args.mode == 'pipeline': steps = ['src'] + list(pipelines.keys()) image = prepare_imgs(args, pipeline_images, steps) return image def main(): args = parse_args() wind_w, wind_h = args.window_size.split('*') wind_w, wind_h = int(wind_w), int(wind_h) # showing windows size cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options, args.phase) dataset, pipelines = build_dataset_pipelines(cfg, args.phase) CLASSES = dataset.CLASSES display_number = min(args.number, len(dataset)) progressBar = ProgressBar(display_number) with vis.ImshowInfosContextManager(fig_size=(wind_w, wind_h)) as manager: for i, item in enumerate(itertools.islice(dataset, display_number)): image = get_display_img(args, item, pipelines) # dist_path is None as default, means not saving pictures dist_path = None if args.output_dir: # some datasets don't have filenames, such as cifar src_path = item.get('filename', '{}.jpg'.format(i)) dist_path = os.path.join(args.output_dir, Path(src_path).name) infos = dict(label=CLASSES[item['gt_label']]) ret, _ = manager.put_img_infos( image, infos, font_size=20, out_file=dist_path, show=args.show, **args.show_options) progressBar.update() if ret == 1: print('\nMannualy interrupted.') break if __name__ == '__main__': main()