import pytest import torch from torch.nn.modules import GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.backbones import ShuffleNetv1 from mmcls.models.backbones.shufflenet_v1 import ShuffleUnit def is_block(modules): """Check if is ResNet building block.""" if isinstance(modules, (ShuffleUnit, )): return True return False def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_shufflenetv1_shuffleuint(): with pytest.raises(ValueError): # combine must be in ['add', 'concat'] ShuffleUnit(24, 16, groups=3, first_block=True, combine='test') with pytest.raises(ValueError): # inplanes must be divisible by groups ShuffleUnit(64, 64, groups=3, first_block=True, combine='add') with pytest.raises(AssertionError): # inplanes must be equal tp = outplanes when combine='add' ShuffleUnit(64, 24, groups=3, first_block=True, combine='add') # Test ShuffleUnit with combine='add' block = ShuffleUnit(24, 24, groups=3, first_block=True, combine='add') x = torch.randn(1, 24, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 24, 56, 56]) # Test ShuffleUnit with combine='concat' block = ShuffleUnit(24, 240, groups=3, first_block=True, combine='concat') x = torch.randn(1, 24, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 240, 28, 28]) # Test ShuffleUnit with checkpoint forward block = ShuffleUnit( 24, 24, groups=3, first_block=True, combine='add', with_cp=True) x = torch.randn(1, 24, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 24, 56, 56]) def test_shufflenetv1_backbone(): with pytest.raises(ValueError): # frozen_stages must in range(-1, 4) ShuffleNetv1(frozen_stages=10) with pytest.raises(ValueError): # the item in out_indices must in range(0, 4) ShuffleNetv1(out_indices=[5]) with pytest.raises(ValueError): # groups must in [1, 2, 3, 4, 8] ShuffleNetv1(groups=10) # Test ShuffleNetv1 norm state model = ShuffleNetv1() model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test ShuffleNetv1 with first stage frozen frozen_stages = 1 model = ShuffleNetv1(frozen_stages=frozen_stages) model.init_weights() model.train() for layer in [model.conv1]: for param in layer.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ShuffleNetv1 forward with groups=3 model = ShuffleNetv1(groups=3) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 240, 28, 28]) assert feat[1].shape == torch.Size([1, 480, 14, 14]) assert feat[2].shape == torch.Size([1, 960, 7, 7]) assert feat[3].shape == torch.Size([1, 960, 7, 7]) # Test ShuffleNetv1 forward with GroupNorm forward model = ShuffleNetv1( groups=3, norm_cfg=dict(type='GN', num_groups=2, requires_grad=True)) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, GroupNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 240, 28, 28]) assert feat[1].shape == torch.Size([1, 480, 14, 14]) assert feat[2].shape == torch.Size([1, 960, 7, 7]) assert feat[3].shape == torch.Size([1, 960, 7, 7]) # Test ShuffleNetv1 forward with layers 1, 2 forward model = ShuffleNetv1(groups=3, out_indices=(1, 2)) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size([1, 480, 14, 14]) assert feat[1].shape == torch.Size([1, 960, 7, 7]) assert feat[2].shape == torch.Size([1, 960, 7, 7]) # Test ShuffleNetv1 forward with checkpoint forward model = ShuffleNetv1(groups=3, with_cp=True) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 240, 28, 28]) assert feat[1].shape == torch.Size([1, 480, 14, 14]) assert feat[2].shape == torch.Size([1, 960, 7, 7]) assert feat[3].shape == torch.Size([1, 960, 7, 7])