_base_ = [ '../_base_/models/vit-base-p16.py', '../_base_/datasets/imagenet_bs64_pil_resize.py', '../_base_/schedules/imagenet_bs4096_AdamW.py', '../_base_/default_runtime.py' ] # model setting model = dict(backbone=dict(pre_norm=True)) # data settings train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=448, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=448, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=448), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule setting optim_wrapper = dict(clip_grad=dict(max_norm=1.0))