# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from pathlib import Path import mmcv import mmengine import torch from mmengine import DictAction from mmpretrain.datasets import build_dataset from mmpretrain.structures import DataSample from mmpretrain.visualization import UniversalVisualizer def parse_args(): parser = argparse.ArgumentParser( description='MMCls evaluate prediction success/fail') parser.add_argument('config', help='test config file path') parser.add_argument('result', help='test result json/pkl file') parser.add_argument( '--out-dir', required=True, help='dir to store output files') parser.add_argument( '--topk', default=20, type=int, help='Number of images to select for success/fail') parser.add_argument( '--rescale-factor', '-r', type=float, help='image rescale factor, which is useful if the output is too ' 'large or too small.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def save_imgs(result_dir, folder_name, results, dataset, rescale_factor=None): full_dir = osp.join(result_dir, folder_name) vis = UniversalVisualizer() vis.dataset_meta = {'classes': dataset.CLASSES} # save imgs dump_infos = [] for data_sample in results: data_info = dataset.get_data_info(data_sample.sample_idx) if 'img' in data_info: img = data_info['img'] name = str(data_sample.sample_idx) elif 'img_path' in data_info: img = mmcv.imread(data_info['img_path'], channel_order='rgb') name = Path(data_info['img_path']).name else: raise ValueError('Cannot load images from the dataset infos.') if rescale_factor is not None: img = mmcv.imrescale(img, rescale_factor) vis.visualize_cls( img, data_sample, out_file=osp.join(full_dir, name + '.png')) dump = dict() for k, v in data_sample.items(): if isinstance(v, torch.Tensor): dump[k] = v.tolist() else: dump[k] = v dump_infos.append(dump) mmengine.dump(dump_infos, osp.join(full_dir, folder_name + '.json')) def main(): args = parse_args() cfg = mmengine.Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # build the dataloader cfg.test_dataloader.dataset.pipeline = [] dataset = build_dataset(cfg.test_dataloader.dataset) results = list() for result in mmengine.load(args.result): data_sample = DataSample() data_sample.set_metainfo({'sample_idx': result['sample_idx']}) data_sample.set_gt_label(result['gt_label']) data_sample.set_pred_label(result['pred_label']) data_sample.set_pred_score(result['pred_score']) results.append(data_sample) # sort result results = sorted(results, key=lambda x: torch.max(x.pred_score)) success = list() fail = list() for data_sample in results: if (data_sample.pred_label == data_sample.gt_label).all(): success.append(data_sample) else: fail.append(data_sample) success = success[:args.topk] fail = fail[:args.topk] save_imgs(args.out_dir, 'success', success, dataset, args.rescale_factor) save_imgs(args.out_dir, 'fail', fail, dataset, args.rescale_factor) if __name__ == '__main__': main()