# Copyright (c) OpenMMLab. All rights reserved. from numbers import Number import numpy as np import torch import torch.nn as nn def accuracy_numpy(pred, target, topk=(1, ), thrs=0.): if isinstance(thrs, Number): thrs = (thrs, ) res_single = True elif isinstance(thrs, tuple): res_single = False else: raise TypeError( f'thrs should be a number or tuple, but got {type(thrs)}.') res = [] maxk = max(topk) num = pred.shape[0] static_inds = np.indices((num, maxk))[0] pred_label = pred.argpartition(-maxk, axis=1)[:, -maxk:] pred_score = pred[static_inds, pred_label] sort_inds = np.argsort(pred_score, axis=1)[:, ::-1] pred_label = pred_label[static_inds, sort_inds] pred_score = pred_score[static_inds, sort_inds] for k in topk: correct_k = pred_label[:, :k] == target.reshape(-1, 1) res_thr = [] for thr in thrs: # Only prediction values larger than thr are counted as correct _correct_k = correct_k & (pred_score[:, :k] > thr) _correct_k = np.logical_or.reduce(_correct_k, axis=1) res_thr.append((_correct_k.sum() * 100. / num)) if res_single: res.append(res_thr[0]) else: res.append(res_thr) return res def accuracy_torch(pred, target, topk=(1, ), thrs=0.): if isinstance(thrs, Number): thrs = (thrs, ) res_single = True elif isinstance(thrs, tuple): res_single = False else: raise TypeError( f'thrs should be a number or tuple, but got {type(thrs)}.') res = [] maxk = max(topk) num = pred.size(0) pred = pred.float() pred_score, pred_label = pred.topk(maxk, dim=1) pred_label = pred_label.t() correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) for k in topk: res_thr = [] for thr in thrs: # Only prediction values larger than thr are counted as correct _correct = correct & (pred_score.t() > thr) correct_k = _correct[:k].reshape(-1).float().sum(0, keepdim=True) res_thr.append((correct_k.mul_(100. / num))) if res_single: res.append(res_thr[0]) else: res.append(res_thr) return res def accuracy(pred, target, topk=1, thrs=0.): """Calculate accuracy according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction. target (torch.Tensor | np.array): The target of each prediction topk (int | tuple[int]): If the predictions in ``topk`` matches the target, the predictions will be regarded as correct ones. Defaults to 1. thrs (Number | tuple[Number], optional): Predictions with scores under the thresholds are considered negative. Default to 0. Returns: torch.Tensor | list[torch.Tensor] | list[list[torch.Tensor]]: Accuracy - torch.Tensor: If both ``topk`` and ``thrs`` is a single value. - list[torch.Tensor]: If one of ``topk`` or ``thrs`` is a tuple. - list[list[torch.Tensor]]: If both ``topk`` and ``thrs`` is a \ tuple. And the first dim is ``topk``, the second dim is ``thrs``. """ assert isinstance(topk, (int, tuple)) if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False assert isinstance(pred, (torch.Tensor, np.ndarray)), \ f'The pred should be torch.Tensor or np.ndarray ' \ f'instead of {type(pred)}.' assert isinstance(target, (torch.Tensor, np.ndarray)), \ f'The target should be torch.Tensor or np.ndarray ' \ f'instead of {type(target)}.' # torch version is faster in most situations. to_tensor = (lambda x: torch.from_numpy(x) if isinstance(x, np.ndarray) else x) pred = to_tensor(pred) target = to_tensor(target) res = accuracy_torch(pred, target, topk, thrs) return res[0] if return_single else res class Accuracy(nn.Module): def __init__(self, topk=(1, )): """Module to calculate the accuracy. Args: topk (tuple): The criterion used to calculate the accuracy. Defaults to (1,). """ super().__init__() self.topk = topk def forward(self, pred, target): """Forward function to calculate accuracy. Args: pred (torch.Tensor): Prediction of models. target (torch.Tensor): Target for each prediction. Returns: list[torch.Tensor]: The accuracies under different topk criterions. """ return accuracy(pred, target, self.topk)