# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import re from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def convert_vig(ckpt): new_ckpt = OrderedDict() for k, v in ckpt.items(): new_key = k new_value = v if 'pos_embed' in new_key: new_key = new_key.replace('pos_embed', 'backbone.pos_embed') elif 'stem' in new_key: new_key = new_key.replace('stem.convs', 'backbone.stem') elif 'backbone' in new_key: new_key = new_key.replace('backbone', 'backbone.blocks') elif 'prediction.0' in new_key: new_key = new_key.replace('prediction.0', 'head.fc1') new_value = v.squeeze(-1).squeeze(-1) elif 'prediction.1' in new_key: new_key = new_key.replace('prediction.1', 'head.bn') elif 'prediction.4' in new_key: new_key = new_key.replace('prediction.4', 'head.fc2') new_value = v.squeeze(-1).squeeze(-1) new_ckpt[new_key] = new_value return new_ckpt def convert_pvig(ckpt): new_ckpt = OrderedDict() stage_idx = 0 stage_blocks = 0 for k, v in ckpt.items(): new_key: str = k new_value = v if 'pos_embed' in new_key: new_key = new_key.replace('pos_embed', 'backbone.pos_embed') elif 'stem' in new_key: new_key = new_key.replace('stem.convs', 'backbone.stem') elif re.match(r'^backbone\.\d+\.conv', new_key) is not None: if new_key.endswith('0.weight'): stage_idx += 1 stage_blocks = int(new_key.split('.')[1]) other = new_key.split('.', maxsplit=3)[-1] new_key = f'backbone.stages.{stage_idx}.0.' + other elif 'backbone' in new_key: block_idx = int(new_key.split('.')[1]) - stage_blocks other = new_key.split('.', maxsplit=2)[-1] new_key = f'backbone.stages.{stage_idx}.{block_idx}.' + other elif 'prediction.0' in new_key: new_key = new_key.replace('prediction.0', 'head.fc1') new_value = v.squeeze(-1).squeeze(-1) elif 'prediction.1' in new_key: new_key = new_key.replace('prediction.1', 'head.bn') elif 'prediction.4' in new_key: new_key = new_key.replace('prediction.4', 'head.fc2') new_value = v.squeeze(-1).squeeze(-1) new_ckpt[new_key] = new_value return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in pretrained vig models to ' 'mmpretrain style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint if 'backbone.2.conv.0.weight' in state_dict: weight = convert_pvig(state_dict) else: weight = convert_vig(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) print('Done!!') if __name__ == '__main__': main()