# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmpretrain.models import DenseCL from mmpretrain.structures import DataSample @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_densecl(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'to_rgb': True } queue_len = 32 feat_dim = 2 momentum = 0.001 loss_lambda = 0.5 backbone = dict(type='ResNet', depth=18, norm_cfg=dict(type='BN')) neck = dict( type='DenseCLNeck', in_channels=512, hid_channels=2, out_channels=2, num_grid=None) head = dict( type='ContrastiveHead', loss=dict(type='CrossEntropyLoss'), temperature=0.2) alg = DenseCL( backbone=backbone, neck=neck, head=head, queue_len=queue_len, feat_dim=feat_dim, momentum=momentum, loss_lambda=loss_lambda, data_preprocessor=data_preprocessor) # test init assert alg.queue.size() == torch.Size([feat_dim, queue_len]) assert alg.queue2.size() == torch.Size([feat_dim, queue_len]) # test loss fake_data = { 'inputs': [torch.randn((2, 3, 224, 224)), torch.randn((2, 3, 224, 224))], 'data_samples': [DataSample() for _ in range(2)] } fake_inputs = alg.data_preprocessor(fake_data) fake_loss = alg(**fake_inputs, mode='loss') assert isinstance(fake_loss['loss_single'].item(), float) assert isinstance(fake_loss['loss_dense'].item(), float) assert fake_loss['loss_single'].item() > 0 assert fake_loss['loss_dense'].item() > 0 assert alg.queue_ptr.item() == 2 assert alg.queue2_ptr.item() == 2