# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmpretrain.models import SparK from mmpretrain.structures import DataSample @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_spark(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'to_rgb': True } backbone = dict( type='SparseResNet', depth=50, out_indices=(0, 1, 2, 3), drop_path_rate=0.05, norm_cfg=dict(type='BN')) neck = dict( type='SparKLightDecoder', feature_dim=512, upsample_ratio=32, # equal to downsample_raito mid_channels=0, norm_cfg=dict(type='BN'), last_act=False) head = dict( type='SparKPretrainHead', loss=dict(type='PixelReconstructionLoss', criterion='L2')) alg = SparK( backbone=backbone, neck=neck, head=head, data_preprocessor=data_preprocessor, enc_dec_norm_cfg=dict(type='BN'), ) fake_data = { 'inputs': torch.randn((2, 3, 224, 224)), 'data_sample': [DataSample() for _ in range(2)] } fake_inputs = alg.data_preprocessor(fake_data) fake_loss = alg(**fake_inputs, mode='loss') assert isinstance(fake_loss['loss'].item(), float)