# LLaVA > [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) ## Abstract Instruction tuning large language models (LLMs) using machine-generated instruction-following data has improved zero-shot capabilities on new tasks, but the idea is less explored in the multimodal field. In this paper, we present the first attempt to use language-only GPT-4 to generate multimodal language-image instruction-following data. By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant, an end-to-end trained large multimodal model that connects a vision encoder and LLM for general-purpose visual and language understanding.Our early experiments show that LLaVA demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. When fine-tuned on Science QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make GPT-4 generated visual instruction tuning data, our model and code base publicly available.
## How to use it? **Prepare the checkpoint** According to the license of LLaMA, we cannot provide the merged checkpoint directly. Please use the below script to download and get the merged the checkpoint. ```shell python tools/model_converters/llava-delta2mmpre.py huggyllama/llama-7b liuhaotian/LLaVA-Lightning-7B-delta-v1-1 ./LLaVA-Lightning-7B-delta-v1-1.pth ``` **Use the model** ```python import torch from mmpretrain import get_model, inference_model model = get_model('llava-7b-v1_caption', pretrained='MERGED_CHECKPOINT_PATH', device='cuda') out = inference_model(model, 'demo/cat-dog.png') print(out) # {'pred_caption': 'In the image, there are two cats sitting on a blanket.'} ``` **Test Command** Prepare your dataset according to the [docs](https://mmpretrain.readthedocs.io/en/latest/user_guides/dataset_prepare.html#prepare-dataset). Test: ```shell python tools/test.py configs/llava/llava-7b-v1_caption.py MERGED_CHECKPOINT_PATH ``` ## Models and results ### Image Caption on COCO | Model | Params (M) | BLEU-4 | CIDER | Config | Download | | :-------------------- | :--------: | :------: | :------: | :------------------------------: | :--------------------: | | `llava-7b-v1_caption` | 7045.82 | Upcoming | Upcoming | [config](llava-7b-v1_caption.py) | See the above tutorial | ## Citation ```bibtex @misc{liu2023llava, title={Visual Instruction Tuning}, author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae}, publisher={arXiv:2304.08485}, year={2023}, } ```