_base_ = [ '../_base_/datasets/imagenet_bs32_mocov2.py', '../_base_/schedules/imagenet_sgd_coslr_200e.py', '../_base_/default_runtime.py', ] # model settings model = dict( type='MoCo', queue_len=65536, feat_dim=128, momentum=0.001, backbone=dict( type='ResNet', depth=50, norm_cfg=dict(type='BN'), zero_init_residual=False), neck=dict( type='MoCoV2Neck', in_channels=2048, hid_channels=2048, out_channels=128, with_avg_pool=True), head=dict( type='ContrastiveHead', loss=dict(type='CrossEntropyLoss'), temperature=0.2)) # only keeps the latest 3 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=3)) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=256)