# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def convert_convnext(ckpt): new_ckpt = OrderedDict() for k, v in list(ckpt.items()): new_v = v if k.startswith('head'): new_k = k.replace('head.', 'head.fc.') new_ckpt[new_k] = new_v continue elif k.startswith('stages'): if 'dwconv' in k: new_k = k.replace('dwconv', 'depthwise_conv') elif 'pwconv' in k: new_k = k.replace('pwconv', 'pointwise_conv') else: new_k = k elif k.startswith('norm'): new_k = k.replace('norm', 'norm3') else: new_k = k if not new_k.startswith('head'): new_k = 'backbone.' + new_k new_ckpt[new_k] = new_v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in pretrained convnext ' 'models to mmpretrain style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint weight = convert_convnext(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(dict(state_dict=weight), args.dst) print('Done!!') if __name__ == '__main__': main()