from mmpretrain.models import ResNet from mmpretrain.registry import MODELS # Register your model to the `MODELS`. @MODELS.register_module() class ExampleNet(ResNet): """Implements an example backbone. Implement the backbone network just like a normal pytorch network. """ def __init__(self, **kwargs) -> None: print('#############################\n' '# Hello MMPretrain! #\n' '#############################') super().__init__(**kwargs) def forward(self, x): """The forward method of the network. Args: x (torch.Tensor): A tensor of image batch with shape ``(batch_size, num_channels, height, width)``. Returns: Tuple[torch.Tensor]: Please return a tuple of tensors and every tensor is a feature map of specified scale. If you only want the final feature map, simply return a tuple with one item. """ return super().forward(x)