# BLIP-2
> [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](http://arxiv.org/abs/2301.12597)
## Abstract
The cost of vision-and-language pre-training has become increasingly prohibitive due to end-toend training of large-scale models. This paper proposes BLIP-2, a generic and efficient pretraining strategy that bootstraps vision-language pre-training from off-the-shelf frozen pre-trained image encoders and frozen large language models. BLIP-2 bridges the modality gap with a lightweight Querying Transformer, which is pretrained in two stages. The first stage bootstraps vision-language representation learning from a frozen image encoder. The second stage bootstraps vision-to-language generative learning from a frozen language model. BLIP-2 achieves state-of-the-art performance on various visionlanguage tasks, despite having significantly fewer trainable parameters than existing methods. For example, our model outperforms Flamingo80B by 8.7% on zero-shot VQAv2 with 54x fewer trainable parameters. We also demonstrate the model’s emerging capabilities of zero-shot image-to-text generation that can follow natural language instructions.
## How to use it?
**Use the model**
```python
from mmpretrain import inference_model
result = inference_model('blip2-opt2.7b_3rdparty-zeroshot_caption', 'demo/cat-dog.png')
print(result)
# {'pred_caption': 'a dog and a cat sitting on a blanket'}
```
**Test Command**
Prepare your dataset according to the [docs](https://mmpretrain.readthedocs.io/en/latest/user_guides/dataset_prepare.html#prepare-dataset).
Test:
```shell
python tools/test.py configs/blip2/blip2_8xb32_retrieval.py https://download.openmmlab.com/mmclassification/v1/blip2/blip2_3rdparty_pretrain_20230505-f7ef4390.pth
```
## Models and results
### Image Caption on COCO
| Model | Params (M) | BLEU-4 | CIDER | Config | Download |
| :------------------------------------------ | :--------: | :----: | :----: | :----------------------------------------: | :-------------------------------------------------------------------------------------------: |
| `blip2-opt2.7b_3rdparty-zeroshot_caption`\* | 3770.47 | 32.90 | 111.10 | [config](./blip2-opt2.7b_8xb32_caption.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip2/blip2-opt2.7b_3rdparty_pretrain_20230505-b51db4e1.pth) |
### Visual Question Answering on VQAv2
| Model | Params (M) | Accuracy | Config | Download |
| :-------------------------------------- | :--------: | :------: | :------------------------------------: | :-------------------------------------------------------------------------------------------------------: |
| `blip2-opt2.7b_3rdparty-zeroshot_vqa`\* | 3770.47 | 53.50 | [config](./blip2-opt2.7b_8xb16_vqa.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip2/blip2-opt2.7b_3rdparty_pretrain_20230505-b51db4e1.pth) |
### Image-To-Text Retrieval on COCO
| Model | Params (M) | Recall@1 | Config | Download |
| :--------------------------- | :--------: | :------: | :----------------------------------: | :-------------------------------------------------------------------------------------------------------------: |
| `blip2_3rdparty_retrieval`\* | 1173.19 | 85.40 | [config](./blip2_8xb32_retrieval.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip2/blip2_3rdparty_pretrain_20230505-f7ef4390.pth) |
*Models with * are converted from the [official repo](https://github.com/salesforce/LAVIS). The config files of these models are only for inference. We haven't reproduce the training results.*
## Citation
```bibtex
@article{beitv2,
title={Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models},
author={Li, Junnan and Li, Dongxu and Savarese, Silvio and Hoi, Steven},
year={2023},
eprint={2301.12597},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```