# BLIP-2 > [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](http://arxiv.org/abs/2301.12597) ## Abstract The cost of vision-and-language pre-training has become increasingly prohibitive due to end-toend training of large-scale models. This paper proposes BLIP-2, a generic and efficient pretraining strategy that bootstraps vision-language pre-training from off-the-shelf frozen pre-trained image encoders and frozen large language models. BLIP-2 bridges the modality gap with a lightweight Querying Transformer, which is pretrained in two stages. The first stage bootstraps vision-language representation learning from a frozen image encoder. The second stage bootstraps vision-to-language generative learning from a frozen language model. BLIP-2 achieves state-of-the-art performance on various visionlanguage tasks, despite having significantly fewer trainable parameters than existing methods. For example, our model outperforms Flamingo80B by 8.7% on zero-shot VQAv2 with 54x fewer trainable parameters. We also demonstrate the model’s emerging capabilities of zero-shot image-to-text generation that can follow natural language instructions.
## How to use it? **Use the model** ```python from mmpretrain import inference_model result = inference_model('blip2-opt2.7b_3rdparty-zeroshot_caption', 'demo/cat-dog.png') print(result) # {'pred_caption': 'a dog and a cat sitting on a blanket'} ``` **Test Command** Prepare your dataset according to the [docs](https://mmpretrain.readthedocs.io/en/latest/user_guides/dataset_prepare.html#prepare-dataset). Test: ```shell python tools/test.py configs/blip2/blip2_8xb32_retrieval.py https://download.openmmlab.com/mmclassification/v1/blip2/blip2_3rdparty_pretrain_20230505-f7ef4390.pth ``` ## Models and results ### Image Caption on COCO | Model | Params (M) | BLEU-4 | CIDER | Config | Download | | :------------------------------------------ | :--------: | :----: | :----: | :----------------------------------------: | :-------------------------------------------------------------------------------------------: | | `blip2-opt2.7b_3rdparty-zeroshot_caption`\* | 3770.47 | 32.90 | 111.10 | [config](./blip2-opt2.7b_8xb32_caption.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip2/blip2-opt2.7b_3rdparty_pretrain_20230505-b51db4e1.pth) | ### Visual Question Answering on VQAv2 | Model | Params (M) | Accuracy | Config | Download | | :-------------------------------------- | :--------: | :------: | :------------------------------------: | :-------------------------------------------------------------------------------------------------------: | | `blip2-opt2.7b_3rdparty-zeroshot_vqa`\* | 3770.47 | 53.50 | [config](./blip2-opt2.7b_8xb16_vqa.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip2/blip2-opt2.7b_3rdparty_pretrain_20230505-b51db4e1.pth) | ### Image-To-Text Retrieval on COCO | Model | Params (M) | Recall@1 | Config | Download | | :--------------------------- | :--------: | :------: | :----------------------------------: | :-------------------------------------------------------------------------------------------------------------: | | `blip2_3rdparty_retrieval`\* | 1173.19 | 85.40 | [config](./blip2_8xb32_retrieval.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip2/blip2_3rdparty_pretrain_20230505-f7ef4390.pth) | *Models with * are converted from the [official repo](https://github.com/salesforce/LAVIS). The config files of these models are only for inference. We haven't reproduce the training results.* ## Citation ```bibtex @article{beitv2, title={Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models}, author={Li, Junnan and Li, Dongxu and Savarese, Silvio and Hoi, Steven}, year={2023}, eprint={2301.12597}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```