# How to Pretrain with Custom Dataset In this tutorial, we provide a practice example and some tips on how to train on your own dataset. In MMPretrain, We support the `CustomDataset` (similar to the `ImageFolder` in `torchvision`), which is able to read the images within the specified folder directly. You only need to prepare the path information of the custom dataset and edit the config. ## Step-1: Prepare your dataset Prepare your dataset following [Prepare Dataset](../user_guides/dataset_prepare.md). And the root folder of the dataset can be like `data/custom_dataset/`. Here, we assume you want to do unsupervised training, and use the sub-folder format `CustomDataset` to organize your dataset as: ```text data/custom_dataset/ ├── sample1.png ├── sample2.png ├── sample3.png ├── sample4.png └── ... ``` ## Step-2: Choose one config as template Here, we would like to use `configs/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py` as the example. We first copy this config file to the same folder and rename it as `mae_vit-base-p16_8xb512-amp-coslr-300e_custom.py`. ```{tip} As a convention, the last field of the config name is the dataset, e.g.,`in1k` for ImageNet dataset, `coco` for COCO dataset ``` The content of this config is: ```python _base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_bs512_mae.py', '../_base_/default_runtime.py', ] # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05), paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=260, by_epoch=True, begin=40, end=300, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) # auto resume resume = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096) ``` ## Step-3: Edit the dataset related config - Override the `type` of dataset settings as `'CustomDataset'` - Override the `data_root` of dataset settings as `data/custom_dataset`. - Override the `ann_file` of dataset settings as an empty string since we assume you are using the sub-folder format `CustomDataset`. - Override the `data_prefix` of dataset settings as an empty string since we are using the whole dataset under the `data_root`, and you don't need to split samples into different subset and set the `data_prefix`. The modified config will be like: ```python _base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_bs512_mae.py', '../_base_/default_runtime.py', ] # >>>>>>>>>>>>>>> Override dataset settings here >>>>>>>>>>>>>>>>>>> train_dataloader = dict( dataset=dict( type='CustomDataset', data_root='data/custom_dataset/', ann_file='', # We assume you are using the sub-folder format without ann_file data_prefix='', # The `data_root` is the data_prefix directly. with_label=False, ) ) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05), paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=260, by_epoch=True, begin=40, end=300, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) # auto resume resume = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096) ``` By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset. ## Another example: Train MAE on COCO Dataset ```{note} You need to install MMDetection to use the `mmdet.CocoDataset` follow this [documentation](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/get_started.md) ``` Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file will be like this: ```python _base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_mae.py', '../_base_/default_runtime.py', ] # >>>>>>>>>>>>>>> Override dataset settings here >>>>>>>>>>>>>>>>>>> train_dataloader = dict( dataset=dict( type='mmdet.CocoDataset', data_root='data/coco/', ann_file='annotations/instances_train2017.json', # Only for loading images, and the labels won't be used. data_prefix=dict(img='train2017/'), ) ) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05), paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=260, by_epoch=True, begin=40, end=300, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) # auto resume resume = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096) ```