Collections: - Name: BEiTv2 Metadata: Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Paper: Title: 'BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers' URL: https://arxiv.org/abs/2208.06366 README: configs/beitv2/README.md Code: URL: https://github.com/open-mmlab/mmclassification/blob/dev-1.x/mmcls/models/backbones/beit.py Version: v1.0.0rc4 Models: - Name: beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 2048 FLOPs: 17581223424 Parameters: 192811376 Training Data: ImageNet-1k In Collection: BEiTv2 Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth Config: configs/beitv2/beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py Downstream: - beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k - Name: beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k Metadata: Epochs: 100 Batch Size: 1024 FLOPs: 17581219584 Parameters: 86530984 Training Data: ImageNet-1k In Collection: BEiTv2 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 85.0 Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth Config: configs/beitv2/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py - Name: beit-base-p16_beitv2-in21k-pre_3rdparty_in1k Metadata: FLOPs: 17581219584 Parameters: 86530984 Training Data: - ImageNet-21k - ImageNet-1k In Collection: BEiTv2 Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 86.47 Top 5 Accuracy: 97.99 Weights: https://download.openmmlab.com/mmclassification/v0/beit/beitv2-base_3rdparty_in1k_20221114-73e11905.pth Config: configs/beitv2/benchmarks/beit-base-p16_8xb64_in1k.py Converted From: Weights: https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth Code: https://github.com/microsoft/unilm/tree/master/beit2