# model settings model = dict( type='xxx', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch')) # dataset settings dataset_type = 'XXXDataset' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [] test_pipeline = [] data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file='', data_prefix='', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file='', data_prefix='', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file='', data_prefix='', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) # checkpoint saving checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/xxx' load_from = None resume_from = None workflow = [('train', 1)]