import pytest import torch from torch.nn.modules import GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.backbones import ShuffleNetv2 from mmcls.models.backbones.shufflenet_v2 import InvertedResidual def is_block(modules): """Check if is ResNet building block.""" if isinstance(modules, (InvertedResidual, )): return True return False def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_shufflenetv2_invertedresidual(): with pytest.raises(ValueError): # stride must be in [1, 2] InvertedResidual(24, 16, stride=3) with pytest.raises(AssertionError): # when stride==1, 16 == branch_features << 1 InvertedResidual(24, 64, stride=1) # Test InvertedResidual forward block = InvertedResidual(24, 64, stride=2) x = torch.randn(1, 24, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 28, 28]) # Test InvertedResidual with checkpoint forward block = InvertedResidual(24, 24, stride=1, with_cp=True) x = torch.randn(1, 24, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 24, 56, 56]) def test_ShuffleNetv2_backbone(): with pytest.raises(ValueError): # groups must in 0.5, 1.0, 1.5, 2.0] ShuffleNetv2(widen_factor=3.0) # Test ShuffleNetv2 norm state model = ShuffleNetv2() model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test ShuffleNetv2 with first stage frozen frozen_stages = 1 model = ShuffleNetv2(frozen_stages=frozen_stages) model.init_weights() model.train() for layer in [model.conv1]: for param in layer.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ShuffleNetv2 with bn frozen model = ShuffleNetv2(bn_frozen=True) model.init_weights() model.train() for i in range(1, 4): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for params in mod.parameters(): params.requires_grad = False # Test ShuffleNetv2 forward with widen_factor=1.0 model = ShuffleNetv2(widen_factor=1.0) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 232, 28, 28]) assert feat[1].shape == torch.Size([1, 464, 14, 14]) assert feat[2].shape == torch.Size([1, 1024, 7, 7]) assert feat[3].shape == torch.Size([1, 1024, 7, 7]) # Test ShuffleNetv2 forward with layers 1 2 forward model = ShuffleNetv2(widen_factor=1.0, out_indices=(1, 2)) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size([1, 464, 14, 14]) assert feat[1].shape == torch.Size([1, 1024, 7, 7]) # Test ShuffleNetv2 forward with checkpoint forward model = ShuffleNetv2(widen_factor=1.0, with_cp=True) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 232, 28, 28]) assert feat[1].shape == torch.Size([1, 464, 14, 14]) assert feat[2].shape == torch.Size([1, 1024, 7, 7]) assert feat[3].shape == torch.Size([1, 1024, 7, 7])