# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from torch.nn.modules import GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.backbones import EfficientNetV2 def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_efficientnet_v2_backbone(): with pytest.raises(TypeError): # pretrained must be a string path model = EfficientNetV2() model.init_weights(pretrained=0) with pytest.raises(AssertionError): # arch must in arc_settings EfficientNetV2(arch='others') with pytest.raises(ValueError): # frozen_stages must less than 8 EfficientNetV2(arch='b1', frozen_stages=12) # Test EfficientNetV2 model = EfficientNetV2() model.init_weights() model.train() x = torch.rand((1, 3, 224, 224)) model(x) # Test EfficientNetV2 with first stage frozen frozen_stages = 7 model = EfficientNetV2(arch='b0', frozen_stages=frozen_stages) model.init_weights() model.train() for i in range(frozen_stages): layer = model.layers[i] for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test EfficientNetV2 with norm eval model = EfficientNetV2(norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test EfficientNetV2 forward with 'b0' arch out_channels = [32, 16, 32, 48, 96, 112, 192, 1280] model = EfficientNetV2(arch='b0', out_indices=(0, 1, 2, 3, 4, 5, 6, 7)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 8 assert feat[0].shape == torch.Size([1, out_channels[0], 112, 112]) assert feat[1].shape == torch.Size([1, out_channels[1], 112, 112]) assert feat[2].shape == torch.Size([1, out_channels[2], 56, 56]) assert feat[3].shape == torch.Size([1, out_channels[3], 28, 28]) assert feat[4].shape == torch.Size([1, out_channels[4], 14, 14]) assert feat[5].shape == torch.Size([1, out_channels[5], 14, 14]) assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7]) assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7]) # Test EfficientNetV2 forward with 'b0' arch and GroupNorm out_channels = [32, 16, 32, 48, 96, 112, 192, 1280] model = EfficientNetV2( arch='b0', out_indices=(0, 1, 2, 3, 4, 5, 6, 7), norm_cfg=dict(type='GN', num_groups=2, requires_grad=True)) for m in model.modules(): if is_norm(m): assert isinstance(m, GroupNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 8 assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32]) assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32]) assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16]) assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8]) assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4]) assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4]) assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2]) assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2]) # Test EfficientNetV2 forward with 'm' arch out_channels = [24, 24, 48, 80, 160, 176, 304, 512, 1280] model = EfficientNetV2(arch='m', out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8)) model.init_weights() model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 9 assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32]) assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32]) assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16]) assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8]) assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4]) assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4]) assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2]) assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2]) assert feat[8].shape == torch.Size([1, out_channels[8], 2, 2]) # Test EfficientNetV2 forward with 'm' arch and GroupNorm out_channels = [24, 24, 48, 80, 160, 176, 304, 512, 1280] model = EfficientNetV2( arch='m', out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8), norm_cfg=dict(type='GN', num_groups=2, requires_grad=True)) for m in model.modules(): if is_norm(m): assert isinstance(m, GroupNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 9 assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32]) assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32]) assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16]) assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8]) assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4]) assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4]) assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2]) assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2]) assert feat[8].shape == torch.Size([1, out_channels[8], 2, 2])