# Copyright (c) OpenMMLab. All rights reserved. import os import tempfile import pytest import torch from mmengine.runner import load_checkpoint, save_checkpoint from torch import nn from torch.nn.modules import GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.backbones import MobileOne from mmcls.models.backbones.mobileone import MobileOneBlock from mmcls.models.utils import SELayer def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False def is_mobileone_block(modules): if isinstance(modules, MobileOneBlock): return True return False def test_mobileoneblock(): # Test MobileOneBlock with kernel_size 3 block = MobileOneBlock(5, 10, 3, 1, stride=1, groups=5) block.eval() x = torch.randn(1, 5, 16, 16) y = block(x) assert block.branch_norm is None assert not hasattr(block, 'branch_reparam') assert hasattr(block, 'branch_scale') assert hasattr(block, 'branch_conv_list') assert hasattr(block, 'branch_norm') assert block.branch_conv_list[0].conv.kernel_size == (3, 3) assert block.branch_conv_list[0].conv.groups == 5 assert block.se_cfg is None assert y.shape == torch.Size((1, 10, 16, 16)) block.switch_to_deploy() assert hasattr(block, 'branch_reparam') assert block.branch_reparam.kernel_size == (3, 3) assert block.branch_reparam.groups == 5 assert block.deploy is True y_deploy = block(x) assert y_deploy.shape == torch.Size((1, 10, 16, 16)) assert torch.allclose(y, y_deploy, atol=1e-5, rtol=1e-4) # Test MobileOneBlock with num_con = 4 block = MobileOneBlock(5, 10, 3, 4, stride=1, groups=5) block.eval() x = torch.randn(1, 5, 16, 16) y = block(x) assert block.branch_norm is None assert not hasattr(block, 'branch_reparam') assert hasattr(block, 'branch_scale') assert hasattr(block, 'branch_conv_list') assert hasattr(block, 'branch_norm') assert block.branch_conv_list[0].conv.kernel_size == (3, 3) assert block.branch_conv_list[0].conv.groups == 5 assert len(block.branch_conv_list) == 4 assert block.se_cfg is None assert y.shape == torch.Size((1, 10, 16, 16)) block.switch_to_deploy() assert hasattr(block, 'branch_reparam') assert block.branch_reparam.kernel_size == (3, 3) assert block.branch_reparam.groups == 5 assert block.deploy is True y_deploy = block(x) assert y_deploy.shape == torch.Size((1, 10, 16, 16)) assert torch.allclose(y, y_deploy, atol=1e-5, rtol=1e-4) # Test MobileOneBlock with kernel_size 1 block = MobileOneBlock(5, 10, 1, 1, stride=1, padding=0) block.eval() x = torch.randn(1, 5, 16, 16) y = block(x) assert block.branch_norm is None assert not hasattr(block, 'branch_reparam') assert hasattr(block, 'branch_scale') assert hasattr(block, 'branch_conv_list') assert hasattr(block, 'branch_norm') assert block.branch_conv_list[0].conv.kernel_size == (1, 1) assert block.branch_conv_list[0].conv.groups == 1 assert len(block.branch_conv_list) == 1 assert block.se_cfg is None assert y.shape == torch.Size((1, 10, 16, 16)) block.switch_to_deploy() assert hasattr(block, 'branch_reparam') assert block.branch_reparam.kernel_size == (1, 1) assert block.branch_reparam.groups == 1 assert block.deploy is True y_deploy = block(x) assert y_deploy.shape == torch.Size((1, 10, 16, 16)) assert torch.allclose(y, y_deploy, atol=1e-5, rtol=1e-4) # Test MobileOneBlock with stride = 2 block = MobileOneBlock(10, 10, 3, 4, stride=2, groups=10) x = torch.randn(1, 10, 16, 16) block.eval() y = block(x) assert block.branch_norm is None assert not hasattr(block, 'branch_reparam') assert hasattr(block, 'branch_scale') assert hasattr(block, 'branch_conv_list') assert hasattr(block, 'branch_norm') assert block.branch_conv_list[0].conv.kernel_size == (3, 3) assert block.branch_conv_list[0].conv.groups == 10 assert len(block.branch_conv_list) == 4 assert block.se_cfg is None assert y.shape == torch.Size((1, 10, 8, 8)) block.switch_to_deploy() assert hasattr(block, 'branch_reparam') assert block.branch_reparam.kernel_size == (3, 3) assert block.branch_reparam.groups == 10 assert block.deploy is True y_deploy = block(x) assert y_deploy.shape == torch.Size((1, 10, 8, 8)) assert torch.allclose(y, y_deploy, atol=1e-5, rtol=1e-4) # # Test MobileOneBlock with padding == dilation == 2 block = MobileOneBlock( 10, 10, 3, 4, stride=1, groups=10, padding=2, dilation=2) x = torch.randn(1, 10, 16, 16) block.eval() y = block(x) assert not hasattr(block, 'branch_reparam') assert hasattr(block, 'branch_scale') assert hasattr(block, 'branch_conv_list') assert hasattr(block, 'branch_norm') assert block.branch_conv_list[0].conv.kernel_size == (3, 3) assert block.branch_conv_list[0].conv.groups == 10 assert len(block.branch_conv_list) == 4 assert block.se_cfg is None assert y.shape == torch.Size((1, 10, 16, 16)) block.switch_to_deploy() assert hasattr(block, 'branch_reparam') assert block.branch_reparam.kernel_size == (3, 3) assert block.branch_reparam.groups == 10 assert block.deploy is True y_deploy = block(x) assert y_deploy.shape == torch.Size((1, 10, 16, 16)) assert torch.allclose(y, y_deploy, atol=1e-5, rtol=1e-4) # Test MobileOneBlock with se se_cfg = dict(ratio=4, divisor=1) block = MobileOneBlock(32, 32, 3, 4, stride=1, se_cfg=se_cfg, groups=32) x = torch.randn(1, 32, 16, 16) block.eval() y = block(x) assert not hasattr(block, 'branch_reparam') assert hasattr(block, 'branch_scale') assert hasattr(block, 'branch_conv_list') assert hasattr(block, 'branch_norm') assert block.branch_conv_list[0].conv.kernel_size == (3, 3) assert block.branch_conv_list[0].conv.groups == 32 assert len(block.branch_conv_list) == 4 assert isinstance(block.se, SELayer) assert y.shape == torch.Size((1, 32, 16, 16)) block.switch_to_deploy() assert hasattr(block, 'branch_reparam') assert block.branch_reparam.kernel_size == (3, 3) assert block.branch_reparam.groups == 32 assert block.deploy is True y_deploy = block(x) assert y_deploy.shape == torch.Size((1, 32, 16, 16)) assert torch.allclose(y, y_deploy, atol=1e-5, rtol=1e-4) # Test MobileOneBlock with deploy == True se_cfg = dict(ratio=4, divisor=1) block = MobileOneBlock( 32, 32, 3, 4, stride=1, se_cfg=se_cfg, groups=32, deploy=True) x = torch.randn(1, 32, 16, 16) block.eval() assert hasattr(block, 'branch_reparam') assert block.branch_reparam.kernel_size == (3, 3) assert block.branch_reparam.groups == 32 assert isinstance(block.se, SELayer) assert block.deploy is True y = block(x) assert y.shape == torch.Size((1, 32, 16, 16)) def test_mobileone_backbone(): with pytest.raises(TypeError): # arch must be str or dict MobileOne(arch=[4, 6, 16, 1]) with pytest.raises(AssertionError): # arch must in arch_settings MobileOne(arch='S3') with pytest.raises(KeyError): arch = dict(num_blocks=[2, 4, 14, 1]) MobileOne(arch=arch) # Test len(arch['num_blocks']) == len(arch['width_factor']) with pytest.raises(AssertionError): arch = dict( num_blocks=[2, 4, 14, 1], width_factor=[0.75, 0.75, 0.75], num_conv_branches=[1, 1, 1, 1], num_se_blocks=[0, 0, 5, 1]) MobileOne(arch=arch) # Test max(out_indices) < len(arch['num_blocks']) with pytest.raises(AssertionError): MobileOne('s0', out_indices=dict()) # Test out_indices not type of int or Sequence with pytest.raises(AssertionError): MobileOne('s0', out_indices=(5, )) # Test MobileOne norm state model = MobileOne('s0') model.train() assert check_norm_state(model.modules(), True) # Test MobileOne with first stage frozen frozen_stages = 1 model = MobileOne('s0', frozen_stages=frozen_stages) model.train() for param in model.stage0.parameters(): assert param.requires_grad is False for i in range(0, frozen_stages): stage_name = model.stages[i] stage = model.__getattr__(stage_name) for mod in stage: if isinstance(mod, _BatchNorm): assert mod.training is False for param in stage.parameters(): assert param.requires_grad is False # Test MobileOne with norm_eval model = MobileOne('s0', norm_eval=True) model.train() assert check_norm_state(model.modules(), False) # Test MobileOne forward with layer 3 forward model = MobileOne('s0', out_indices=(3, )) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert isinstance(feat, tuple) assert len(feat) == 1 assert isinstance(feat[0], torch.Tensor) assert feat[0].shape == torch.Size((1, 1024, 7, 7)) # Test MobileOne forward arch_settings = { 's0': dict(out_channels=[48, 128, 256, 1024], ), 's1': dict(out_channels=[96, 192, 512, 1280]), 's2': dict(out_channels=[96, 256, 640, 2048]), 's3': dict(out_channels=[128, 320, 768, 2048], ), 's4': dict(out_channels=[192, 448, 896, 2048], ) } choose_models = ['s0', 's1', 's4'] # Test RepVGG model forward for model_name, model_arch in arch_settings.items(): if model_name not in choose_models: continue model = MobileOne(model_name, out_indices=(0, 1, 2, 3)) model.init_weights() # Test Norm for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat[0].shape == torch.Size( (1, model_arch['out_channels'][0], 56, 56)) assert feat[1].shape == torch.Size( (1, model_arch['out_channels'][1], 28, 28)) assert feat[2].shape == torch.Size( (1, model_arch['out_channels'][2], 14, 14)) assert feat[3].shape == torch.Size( (1, model_arch['out_channels'][3], 7, 7)) # Test eval of "train" mode and "deploy" mode gap = nn.AdaptiveAvgPool2d(output_size=(1)) fc = nn.Linear(model_arch['out_channels'][3], 10) model.eval() feat = model(imgs) pred = fc(gap(feat[3]).flatten(1)) model.switch_to_deploy() for m in model.modules(): if isinstance(m, MobileOneBlock): assert m.deploy is True feat_deploy = model(imgs) pred_deploy = fc(gap(feat_deploy[3]).flatten(1)) for i in range(4): torch.allclose(feat[i], feat_deploy[i]) torch.allclose(pred, pred_deploy) def test_load_deploy_mobileone(): # Test output before and load from deploy checkpoint model = MobileOne('s0', out_indices=(0, 1, 2, 3)) inputs = torch.randn((1, 3, 224, 224)) tmpdir = tempfile.gettempdir() ckpt_path = os.path.join(tmpdir, 'ckpt.pth') model.switch_to_deploy() model.eval() outputs = model(inputs) model_deploy = MobileOne('s0', out_indices=(0, 1, 2, 3), deploy=True) save_checkpoint(model.state_dict(), ckpt_path) load_checkpoint(model_deploy, ckpt_path) outputs_load = model_deploy(inputs) for feat, feat_load in zip(outputs, outputs_load): assert torch.allclose(feat, feat_load) os.remove(ckpt_path)