# Confusion Matrix MMPretrain provides `tools/analysis_tools/confusion_matrix.py` tool to calculate and visualize the confusion matrix. For an introduction to the confusion matrix, see [link](https://en.wikipedia.org/wiki/Confusion_matrix). ## Command-line Usage **Command**: ```shell python tools/analysis_tools/confusion_matrix.py \ ${CONFIG_FILE} \ ${CHECKPOINT} \ [--show] \ [--show-path] \ [--include-values] \ [--cmap ${CMAP}] \ [--cfg-options ${CFG-OPTIONS}] ``` **Description of all arguments**: - `config`: The path of the model config file. - `checkpoint`: The path of the checkpoint. - `--show`: If or not to show the matplotlib visualization result of the confusion matrix, the default is `False`. - `--show-path`: If `show` is True, the path where the results are saved is visualized. - `--include-values`: Whether to add values to the visualization results. - `--cmap`: The color map used for visualization results, `cmap`, which defaults to `viridis`. * `--cfg-options`: Modifications to the configuration file, refer to [Learn about Configs](../user_guides/config.md). **Examples of use**: ```shell python tools/analysis_tools/confusion_matrix.py \ configs/resnet/resnet50_8xb16_cifar10.py \ https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth \ --show ``` **output image**:
## **Basic Usage** ```python >>> import torch >>> from mmpretrain.evaluation import ConfusionMatrix >>> y_pred = [0, 1, 1, 3] >>> y_true = [0, 2, 1, 3] >>> ConfusionMatrix.calculate(y_pred, y_true, num_classes=4) tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) >>> # plot the confusion matrix >>> import matplotlib.pyplot as plt >>> y_score = torch.rand((1000, 10)) >>> y_true = torch.randint(10, (1000, )) >>> matrix = ConfusionMatrix.calculate(y_score, y_true) >>> ConfusionMatrix().plot(matrix) >>> plt.show() ``` ## **Use with Evalutor** ```python >>> import torch >>> from mmpretrain.evaluation import ConfusionMatrix >>> from mmpretrain.structures import DataSample >>> from mmengine.evaluator import Evaluator >>> data_samples = [ ... DataSample().set_gt_label(i%5).set_pred_score(torch.rand(5)) ... for i in range(1000) ... ] >>> evaluator = Evaluator(metrics=ConfusionMatrix()) >>> evaluator.process(data_samples) >>> evaluator.evaluate(1000) {'confusion_matrix/result': tensor([[37, 37, 48, 43, 35], [35, 51, 32, 46, 36], [45, 28, 39, 42, 46], [42, 40, 40, 35, 43], [40, 39, 41, 37, 43]])} ```