# Hyper-parameter Scheduler Visualization This tool aims to help the user to check the hyper-parameter scheduler of the optimizer (without training), which support the "learning rate" or "momentum" ## Introduce the scheduler visualization tool ```bash python tools/visualization/vis_scheduler.py \ ${CONFIG_FILE} \ [-p, --parameter ${PARAMETER_NAME}] \ [-d, --dataset-size ${DATASET_SIZE}] \ [-n, --ngpus ${NUM_GPUs}] \ [-s, --save-path ${SAVE_PATH}] \ [--title ${TITLE}] \ [--style ${STYLE}] \ [--window-size ${WINDOW_SIZE}] \ [--cfg-options] ``` **Description of all arguments**: - `config`: The path of a model config file. - **`-p, --parameter`**: The param to visualize its change curve, choose from "lr" and "momentum". Default to use "lr". - **`-d, --dataset-size`**: The size of the datasets. If set,`build_dataset` will be skipped and `${DATASET_SIZE}` will be used as the size. Default to use the function `build_dataset`. - **`-n, --ngpus`**: The number of GPUs used in training, default to be 1. - **`-s, --save-path`**: The learning rate curve plot save path, default not to save. - `--title`: Title of figure. If not set, default to be config file name. - `--style`: Style of plt. If not set, default to be `whitegrid`. - `--window-size`: The shape of the display window. If not specified, it will be set to `12*7`. If used, it must be in the format `'W*H'`. - `--cfg-options`: Modifications to the configuration file, refer to [Learn about Configs](../user_guides/config.md). ```{note} Loading annotations maybe consume much time, you can directly specify the size of the dataset with `-d, dataset-size` to save time. ``` ## How to plot the learning rate curve without training You can use the following command to plot the step learning rate schedule used in the config `configs/swin_transformer/swin-base_16xb64_in1k.py`: ```bash python tools/visualization/vis_scheduler.py configs/swin_transformer/swin-base_16xb64_in1k.py --dataset-size 1281167 --ngpus 16 ```