# Copyright (c) OpenMMLab. All rights reserved. from mmcls.registry import MODELS from ..builder import build_backbone, build_head, build_neck from ..heads import MultiLabelClsHead from ..utils.augment import Augments from .base import BaseClassifier @MODELS.register_module() class ImageClassifier(BaseClassifier): def __init__(self, backbone, neck=None, head=None, pretrained=None, train_cfg=None, init_cfg=None): super(ImageClassifier, self).__init__(init_cfg) if pretrained is not None: self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) self.backbone = build_backbone(backbone) if neck is not None: self.neck = build_neck(neck) if head is not None: self.head = build_head(head) self.augments = None if train_cfg is not None: augments_cfg = train_cfg.get('augments', None) if augments_cfg is not None: self.augments = Augments(augments_cfg) def extract_feat(self, img, stage='neck'): """Directly extract features from the specified stage. Args: img (Tensor): The input images. The shape of it should be ``(num_samples, num_channels, *img_shape)``. stage (str): Which stage to output the feature. Choose from "backbone", "neck" and "pre_logits". Defaults to "neck". Returns: tuple | Tensor: The output of specified stage. The output depends on detailed implementation. In general, the output of backbone and neck is a tuple and the output of pre_logits is a tensor. Examples: 1. Backbone output >>> import torch >>> from mmcv import Config >>> from mmcls.models import build_classifier >>> >>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model >>> cfg.backbone.out_indices = (0, 1, 2, 3) # Output multi-scale feature maps >>> model = build_classifier(cfg) >>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='backbone') >>> for out in outs: ... print(out.shape) torch.Size([1, 64, 56, 56]) torch.Size([1, 128, 28, 28]) torch.Size([1, 256, 14, 14]) torch.Size([1, 512, 7, 7]) 2. Neck output >>> import torch >>> from mmcv import Config >>> from mmcls.models import build_classifier >>> >>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model >>> cfg.backbone.out_indices = (0, 1, 2, 3) # Output multi-scale feature maps >>> model = build_classifier(cfg) >>> >>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='neck') >>> for out in outs: ... print(out.shape) torch.Size([1, 64]) torch.Size([1, 128]) torch.Size([1, 256]) torch.Size([1, 512]) 3. Pre-logits output (without the final linear classifier head) >>> import torch >>> from mmcv import Config >>> from mmcls.models import build_classifier >>> >>> cfg = Config.fromfile('configs/vision_transformer/vit-base-p16_pt-64xb64_in1k-224.py').model >>> model = build_classifier(cfg) >>> >>> out = model.extract_feat(torch.rand(1, 3, 224, 224), stage='pre_logits') >>> print(out.shape) # The hidden dims in head is 3072 torch.Size([1, 3072]) """ # noqa: E501 assert stage in ['backbone', 'neck', 'pre_logits'], \ (f'Invalid output stage "{stage}", please choose from "backbone", ' '"neck" and "pre_logits"') x = self.backbone(img) if stage == 'backbone': return x if self.with_neck: x = self.neck(x) if stage == 'neck': return x if self.with_head and hasattr(self.head, 'pre_logits'): x = self.head.pre_logits(x) return x def forward_train(self, img, gt_label, **kwargs): """Forward computation during training. Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. gt_label (Tensor): It should be of shape (N, 1) encoding the ground-truth label of input images for single label task. It shoulf be of shape (N, C) encoding the ground-truth label of input images for multi-labels task. Returns: dict[str, Tensor]: a dictionary of loss components """ if self.augments is not None: img, gt_label = self.augments(img, gt_label) x = self.extract_feat(img) losses = dict() loss = self.head.forward_train(x, gt_label) losses.update(loss) return losses def simple_test(self, img, img_metas=None, **kwargs): """Test without augmentation.""" x = self.extract_feat(img) if isinstance(self.head, MultiLabelClsHead): assert 'softmax' not in kwargs, ( 'Please use `sigmoid` instead of `softmax` ' 'in multi-label tasks.') res = self.head.simple_test(x, **kwargs) return res