# Copyright (c) OpenMMLab. All rights reserved. import argparse import mmengine import rich from mmengine import Config, DictAction from mmengine.evaluator import Evaluator from mmengine.registry import init_default_scope def parse_args(): parser = argparse.ArgumentParser(description='Evaluate metric of the ' 'results saved in pkl format') parser.add_argument('config', help='Config of the model') parser.add_argument('pkl_results', help='Results in pickle format') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() # load config cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) init_default_scope('mmcls') # Use mmcls as default scope. predictions = mmengine.load(args.pkl_results) evaluator = Evaluator(cfg.test_evaluator) eval_results = evaluator.offline_evaluate(predictions, None) rich.print(eval_results) if __name__ == '__main__': main()