# Copyright (c) OpenMMLab. All rights reserved. import base64 import os import mmcv import numpy as np import torch from ts.torch_handler.base_handler import BaseHandler import mmpretrain.models from mmpretrain.apis import (ImageClassificationInferencer, ImageRetrievalInferencer, get_model) class MMPreHandler(BaseHandler): def initialize(self, context): properties = context.system_properties self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.map_location + ':' + str(properties.get('gpu_id')) if torch.cuda. is_available() else self.map_location) self.manifest = context.manifest model_dir = properties.get('model_dir') serialized_file = self.manifest['model']['serializedFile'] checkpoint = os.path.join(model_dir, serialized_file) self.config_file = os.path.join(model_dir, 'config.py') model = get_model(self.config_file, checkpoint, self.device) if isinstance(model, mmpretrain.models.ImageClassifier): self.inferencer = ImageClassificationInferencer(model) elif isinstance(model, mmpretrain.models.ImageToImageRetriever): self.inferencer = ImageRetrievalInferencer(model) else: raise NotImplementedError( f'No available inferencer for {type(model)}') self.initialized = True def preprocess(self, data): images = [] for row in data: image = row.get('data') or row.get('body') if isinstance(image, str): image = base64.b64decode(image) image = mmcv.imfrombytes(image) images.append(image) return images def inference(self, data, *args, **kwargs): results = [] for image in data: results.append(self.inferencer(image)[0]) return results def postprocess(self, data): processed_data = [] for result in data: processed_result = {} for k, v in result.items(): if isinstance(v, (torch.Tensor, np.ndarray)): processed_result[k] = v.tolist() else: processed_result[k] = v processed_data.append(processed_result) return processed_data