import torch.nn as nn from mmcv.utils import Registry, build_from_cfg BACKBONES = Registry('backbone') CLASSIFIERS = Registry('classifier') HEADS = Registry('head') NECKS = Registry('neck') LOSSES = Registry('loss') def build(cfg, registry, default_args=None): if isinstance(cfg, list): modules = [ build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg ] return nn.Sequential(*modules) else: return build_from_cfg(cfg, registry, default_args) def build_backbone(cfg): return build(cfg, BACKBONES) def build_head(cfg): return build(cfg, HEADS) def build_neck(cfg): return build(cfg, NECKS) def build_loss(cfg): return build(cfg, LOSSES) def build_classifier(cfg): return build(cfg, CLASSIFIERS)