# Copyright (c) OpenMMLab. All rights reserved. import argparse from collections import OrderedDict from pathlib import Path import torch def convert(src, dst): print('Converting...') blobs = torch.load(src, map_location='cpu') converted_state_dict = OrderedDict() for key in blobs: splited_key = key.split('.') splited_key = ['norm' if i == 'bn' else i for i in splited_key] splited_key = [ 'branch_norm' if i == 'rbr_identity' else i for i in splited_key ] splited_key = [ 'branch_1x1' if i == 'rbr_1x1' else i for i in splited_key ] splited_key = [ 'branch_3x3' if i == 'rbr_dense' else i for i in splited_key ] splited_key = [ 'backbone.stem' if i[:6] == 'stage0' else i for i in splited_key ] splited_key = [ 'backbone.stage_' + i[5] if i[:5] == 'stage' else i for i in splited_key ] splited_key = ['se_layer' if i == 'se' else i for i in splited_key] splited_key = ['conv1.conv' if i == 'down' else i for i in splited_key] splited_key = ['conv2.conv' if i == 'up' else i for i in splited_key] splited_key = ['head.fc' if i == 'linear' else i for i in splited_key] new_key = '.'.join(splited_key) converted_state_dict[new_key] = blobs[key] torch.save(converted_state_dict, dst) print('Done!') def main(): parser = argparse.ArgumentParser(description='Convert model keys') parser.add_argument('src', help='src detectron model path') parser.add_argument('dst', help='save path') args = parser.parse_args() dst = Path(args.dst) if dst.suffix != '.pth': print('The path should contain the name of the pth format file.') exit(1) dst.parent.mkdir(parents=True, exist_ok=True) convert(args.src, args.dst) if __name__ == '__main__': main()