Collections: - Name: DeiT Metadata: Training Data: ImageNet-1k Architecture: - Layer Normalization - Scaled Dot-Product Attention - Attention Dropout - Multi-Head Attention Paper: URL: https://arxiv.org/abs/2012.12877 Title: "Training data-efficient image transformers & distillation through attention" README: configs/deit/README.md Models: - Name: deit-tiny_3rdparty_pt-4xb256_in1k Metadata: FLOPs: 1080000000 Parameters: 5720000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 72.13 Top 5 Accuracy: 91.13 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny_3rdparty_pt-4xb256_in1k_20211124-e930093b.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L63 Config: configs/deit/deit-tiny_pt-4xb256_in1k.py - Name: deit-tiny-distilled_3rdparty_pt-4xb256_in1k Metadata: FLOPs: 1080000000 Parameters: 5720000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 74.51 Top 5 Accuracy: 91.90 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny-distilled_3rdparty_pt-4xb256_in1k_20211216-c429839a.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L108 Config: configs/deit/deit-tiny-distilled_pt-4xb256_in1k.py - Name: deit-small_3rdparty_pt-4xb256_in1k Metadata: FLOPs: 4240000000 Parameters: 22050000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 79.83 Top 5 Accuracy: 94.95 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-small_3rdparty_pt-4xb256_in1k_20211124-ffe94edd.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L78 Config: configs/deit/deit-small_pt-4xb256_in1k.py - Name: deit-small-distilled_3rdparty_pt-4xb256_in1k Metadata: FLOPs: 4240000000 Parameters: 22050000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 81.17 Top 5 Accuracy: 95.40 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-small-distilled_3rdparty_pt-4xb256_in1k_20211216-4de1d725.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L123 Config: configs/deit/deit-small-distilled_pt-4xb256_in1k.py - Name: deit-base_3rdparty_pt-16xb64_in1k Metadata: FLOPs: 16860000000 Parameters: 86570000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 81.79 Top 5 Accuracy: 95.59 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_pt-16xb64_in1k_20211124-6f40c188.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L93 Config: configs/deit/deit-base_pt-16xb64_in1k.py - Name: deit-base-distilled_3rdparty_pt-16xb64_in1k Metadata: FLOPs: 16860000000 Parameters: 86570000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.33 Top 5 Accuracy: 96.49 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_pt-16xb64_in1k_20211216-42891296.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L138 Config: configs/deit/deit-base-distilled_pt-16xb64_in1k.py - Name: deit-base_3rdparty_ft-16xb32_in1k-384px Metadata: FLOPs: 49370000000 Parameters: 86860000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.04 Top 5 Accuracy: 96.31 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_ft-16xb32_in1k-384px_20211124-822d02f2.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L153 Config: configs/deit/deit-base_ft-16xb32_in1k-384px.py - Name: deit-base-distilled_3rdparty_ft-16xb32_in1k-384px Metadata: FLOPs: 49370000000 Parameters: 86860000 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 85.55 Top 5 Accuracy: 97.35 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_ft-16xb32_in1k-384px_20211216-e48d6000.pth Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L168 Config: configs/deit/deit-base-distilled_ft-16xb32_in1k-384px.py