_base_ = [ '../_base_/default_runtime.py', ] # model settings model = dict( type='Otter', tokenizer=dict(type='LlamaTokenizer', name_or_path='huggyllama/llama-7b'), vision_encoder=dict( type='VisionTransformer', arch='l', patch_size=14, pre_norm=True, norm_cfg=dict(type='LN', eps=1e-5), layer_cfgs=dict(act_cfg=dict(type='QuickGELU')), final_norm=False, out_type='raw', pretrained=( 'https://download.openmmlab.com/mmclassification/v0/clip/' 'vit-large-p14_clip-openai-pre_3rdparty_20230517-95e2af0b.pth'), ), lang_encoder=dict( base=dict( type='AutoModelForCausalLM', name_or_path='huggyllama/llama-7b', local_files_only=True), adapter=dict( type='FlamingoLMAdapter', vis_hidden_size=1024, cross_attn_every_n_layers=4, use_media_placement_augmentation=False, only_attend_previous=True, ), ), task='vqa', final_prompt_tmpl='User:{question} GPT:', generation_cfg=dict( num_beams=3, max_new_tokens=24, no_repeat_ngram_size=3), ) # data settings data_preprocessor = dict( type='MultiModalDataPreprocessor', mean=[122.770938, 116.7460125, 104.09373615], std=[68.5005327, 66.6321579, 70.32316305], to_rgb=True, ) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=224, interpolation='bicubic', backend='pillow'), dict(type='CenterCrop', crop_size=(224, 224)), dict( type='PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight', 'shots'], meta_keys=['image_id'], ), ] val_dataloader = dict( batch_size=8, num_workers=8, dataset=dict( type='FlamingoEvalCOCOVQA', data_root='data/coco', data_prefix='val2014', question_file='annotations/v2_OpenEnded_mscoco_val2014_questions.json', ann_file='annotations/v2_mscoco_val2014_annotations.json', pipeline=test_pipeline, num_shots=0, num_support_examples=2048, num_query_examples=5000, ), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, ) val_evaluator = dict(type='VQAAcc') test_dataloader = dict( batch_size=8, num_workers=8, dataset=dict( type='FlamingoEvalCOCOVQA', data_root='data/coco', data_prefix='test2015', question_file= 'annotations/v2_OpenEnded_mscoco_test-dev2015_questions.json', pipeline=test_pipeline, num_shots=0, num_support_examples=2048, num_query_examples=5000, ), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, ) test_evaluator = dict(type='ReportVQA', file_path='vqa_test-dev.json') # schedule settings val_cfg = dict() test_cfg = dict()