# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import random from functools import partial import numpy as np import torch from mmcv.parallel import collate from mmcv.runner import get_dist_info from mmcv.utils import Registry, build_from_cfg, digit_version from torch.utils.data import DataLoader if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) hard_limit = rlimit[1] soft_limit = min(4096, hard_limit) resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) DATASETS = Registry('dataset') PIPELINES = Registry('pipeline') SAMPLERS = Registry('sampler') def build_dataset(cfg, default_args=None): from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, KFoldDataset, RepeatDataset) if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'ConcatDataset': dataset = ConcatDataset( [build_dataset(c, default_args) for c in cfg['datasets']], separate_eval=cfg.get('separate_eval', True)) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( build_dataset(cfg['dataset'], default_args), cfg['times']) elif cfg['type'] == 'ClassBalancedDataset': dataset = ClassBalancedDataset( build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) elif cfg['type'] == 'KFoldDataset': cp_cfg = copy.deepcopy(cfg) if cp_cfg.get('test_mode', None) is None: cp_cfg['test_mode'] = (default_args or {}).pop('test_mode', False) cp_cfg['dataset'] = build_dataset(cp_cfg['dataset'], default_args) cp_cfg.pop('type') dataset = KFoldDataset(**cp_cfg) else: dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset def build_dataloader(dataset, samples_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, round_up=True, seed=None, pin_memory=True, persistent_workers=True, sampler_cfg=None, **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. samples_per_gpu (int): Number of training samples on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. round_up (bool): Whether to round up the length of dataset by adding extra samples to make it evenly divisible. Default: True. pin_memory (bool): Whether to use pin_memory in DataLoader. Default: True persistent_workers (bool): If True, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. The argument also has effect in PyTorch>=1.7.0. Default: True sampler_cfg (dict): sampler configuration to override the default sampler kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() # Custom sampler logic if sampler_cfg: # shuffle=False when val and test sampler_cfg.update(shuffle=shuffle) sampler = build_sampler( sampler_cfg, default_args=dict( dataset=dataset, num_replicas=world_size, rank=rank)) # Default sampler logic elif dist: sampler = build_sampler( dict( type='DistributedSampler', dataset=dataset, num_replicas=world_size, rank=rank, shuffle=shuffle, round_up=round_up)) else: sampler = None # If sampler exists, turn off dataloader shuffle if sampler is not None: shuffle = False if dist: batch_size = samples_per_gpu num_workers = workers_per_gpu else: batch_size = num_gpus * samples_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None if digit_version(torch.__version__) >= digit_version('1.8.0'): kwargs['persistent_workers'] = persistent_workers data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), pin_memory=pin_memory, shuffle=shuffle, worker_init_fn=init_fn, **kwargs) return data_loader def worker_init_fn(worker_id, num_workers, rank, seed): # The seed of each worker equals to # num_worker * rank + worker_id + user_seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed) def build_sampler(cfg, default_args=None): if cfg is None: return None else: return build_from_cfg(cfg, SAMPLERS, default_args=default_args)