_base_ = [ '../../_base_/datasets/imagenet_bs64_swin_224.py', '../../_base_/default_runtime.py', ] data_preprocessor = dict( num_classes=1000, # RGB format normalization parameters mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], # convert image from BGR to RGB to_rgb=True, ) bgr_mean = data_preprocessor['mean'][::-1] bgr_std = data_preprocessor['std'][::-1] train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='NumpyToPIL', to_rgb=True), dict( type='torchvision/TrivialAugmentWide', num_magnitude_bins=31, interpolation='bicubic', fill=None), dict(type='PILToNumpy', to_bgr=True), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, fill_color=bgr_mean, fill_std=bgr_std), dict(type='PackInputs'), ] train_dataloader = dict( dataset=dict(pipeline=train_pipeline), sampler=dict(type='RepeatAugSampler', shuffle=True), ) # Model settings model = dict( type='ImageClassifier', backbone=dict( type='ConvNeXt', arch='tiny', drop_path_rate=0.1, layer_scale_init_value=0., use_grn=True, ), head=dict( type='LinearClsHead', num_classes=1000, in_channels=768, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), init_cfg=dict(type='TruncNormal', layer='Linear', std=.02, bias=0.), ), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0), ]), ) custom_hooks = [ dict( type='EMAHook', momentum=1e-4, evaluate_on_origin=True, priority='ABOVE_NORMAL') ] # schedule settings # optimizer optim_wrapper = dict( optimizer=dict( type='AdamW', lr=3.2e-3, betas=(0.9, 0.999), weight_decay=0.05), constructor='LearningRateDecayOptimWrapperConstructor', paramwise_cfg=dict( layer_decay_rate=0.7, norm_decay_mult=0.0, bias_decay_mult=0.0, flat_decay_mult=0.0)) # learning policy param_scheduler = [ # warm up learning rate scheduler dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=20, convert_to_iter_based=True), # main learning rate scheduler dict( type='CosineAnnealingLR', T_max=280, eta_min=1.0e-5, by_epoch=True, begin=20, end=300) ] train_cfg = dict(by_epoch=True, max_epochs=300) val_cfg = dict() test_cfg = dict() default_hooks = dict( # only keeps the latest 2 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=2048)