# Copyright (c) OpenMMLab. All rights reserved. import os import tempfile import pytest import torch from mmengine.runner import load_checkpoint, save_checkpoint from torch import nn from torch.nn.modules import GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmpretrain.models.backbones import RepLKNet from mmpretrain.models.backbones.replknet import ReparamLargeKernelConv def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False def is_replk_block(modules): if isinstance(modules, ReparamLargeKernelConv): return True return False def test_replknet_replkblock(): # Test ReparamLargeKernelConv with in_channels != out_channels, # kernel_size = 31, stride = 1, groups=in_channels, small_kernel = 5 block = ReparamLargeKernelConv( 5, 10, kernel_size=31, stride=1, groups=5, small_kernel=5) block.eval() x = torch.randn(1, 5, 64, 64) x_out_not_deploy = block(x) assert block.small_kernel <= block.kernel_size assert not hasattr(block, 'lkb_reparam') assert hasattr(block, 'lkb_origin') assert hasattr(block, 'small_conv') assert x_out_not_deploy.shape == torch.Size((1, 10, 64, 64)) block.merge_kernel() assert block.small_kernel_merged is True x_out_deploy = block(x) assert x_out_deploy.shape == torch.Size((1, 10, 64, 64)) assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4) # Test ReparamLargeKernelConv with in_channels == out_channels, # kernel_size = 31, stride = 1, groups=in_channels, small_kernel = 5 block = ReparamLargeKernelConv( 12, 12, kernel_size=31, stride=1, groups=12, small_kernel=5) block.eval() x = torch.randn(1, 12, 64, 64) x_out_not_deploy = block(x) assert block.small_kernel <= block.kernel_size assert not hasattr(block, 'lkb_reparam') assert hasattr(block, 'lkb_origin') assert hasattr(block, 'small_conv') assert x_out_not_deploy.shape == torch.Size((1, 12, 64, 64)) block.merge_kernel() assert block.small_kernel_merged is True x_out_deploy = block(x) assert x_out_deploy.shape == torch.Size((1, 12, 64, 64)) assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4) # Test ReparamLargeKernelConv with in_channels == out_channels, # kernel_size = 31, stride = 2, groups=in_channels, small_kernel = 5 block = ReparamLargeKernelConv( 16, 16, kernel_size=31, stride=2, groups=16, small_kernel=5) block.eval() x = torch.randn(1, 16, 64, 64) x_out_not_deploy = block(x) assert block.small_kernel <= block.kernel_size assert not hasattr(block, 'lkb_reparam') assert hasattr(block, 'lkb_origin') assert hasattr(block, 'small_conv') assert x_out_not_deploy.shape == torch.Size((1, 16, 32, 32)) block.merge_kernel() assert block.small_kernel_merged is True x_out_deploy = block(x) assert x_out_deploy.shape == torch.Size((1, 16, 32, 32)) assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4) # Test ReparamLargeKernelConv with in_channels == out_channels, # kernel_size = 27, stride = 1, groups=in_channels, small_kernel = 5 block = ReparamLargeKernelConv( 12, 12, kernel_size=27, stride=1, groups=12, small_kernel=5) block.eval() x = torch.randn(1, 12, 48, 48) x_out_not_deploy = block(x) assert block.small_kernel <= block.kernel_size assert not hasattr(block, 'lkb_reparam') assert hasattr(block, 'lkb_origin') assert hasattr(block, 'small_conv') assert x_out_not_deploy.shape == torch.Size((1, 12, 48, 48)) block.merge_kernel() assert block.small_kernel_merged is True x_out_deploy = block(x) assert x_out_deploy.shape == torch.Size((1, 12, 48, 48)) assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4) # Test ReparamLargeKernelConv with in_channels == out_channels, # kernel_size = 31, stride = 1, groups=in_channels, small_kernel = 7 block = ReparamLargeKernelConv( 12, 12, kernel_size=31, stride=1, groups=12, small_kernel=7) block.eval() x = torch.randn(1, 12, 64, 64) x_out_not_deploy = block(x) assert block.small_kernel <= block.kernel_size assert not hasattr(block, 'lkb_reparam') assert hasattr(block, 'lkb_origin') assert hasattr(block, 'small_conv') assert x_out_not_deploy.shape == torch.Size((1, 12, 64, 64)) block.merge_kernel() assert block.small_kernel_merged is True x_out_deploy = block(x) assert x_out_deploy.shape == torch.Size((1, 12, 64, 64)) assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4) # Test ReparamLargeKernelConv with deploy == True block = ReparamLargeKernelConv( 8, 8, kernel_size=31, stride=1, groups=8, small_kernel=5, small_kernel_merged=True) assert isinstance(block.lkb_reparam, nn.Conv2d) assert not hasattr(block, 'lkb_origin') assert not hasattr(block, 'small_conv') x = torch.randn(1, 8, 48, 48) x_out = block(x) assert x_out.shape == torch.Size((1, 8, 48, 48)) def test_replknet_backbone(): with pytest.raises(TypeError): # arch must be str or dict RepLKNet(arch=[4, 6, 16, 1]) with pytest.raises(AssertionError): # arch must in arch_settings RepLKNet(arch='31C') with pytest.raises(KeyError): # arch must have num_blocks and width_factor arch = dict(large_kernel_sizes=[31, 29, 27, 13]) RepLKNet(arch=arch) with pytest.raises(KeyError): # arch must have num_blocks and width_factor arch = dict(large_kernel_sizes=[31, 29, 27, 13], layers=[2, 2, 18, 2]) RepLKNet(arch=arch) with pytest.raises(KeyError): # arch must have num_blocks and width_factor arch = dict( large_kernel_sizes=[31, 29, 27, 13], layers=[2, 2, 18, 2], channels=[128, 256, 512, 1024]) RepLKNet(arch=arch) # len(arch['large_kernel_sizes']) == arch['layers']) # == len(arch['channels']) # == len(strides) == len(dilations) with pytest.raises(AssertionError): arch = dict( large_kernel_sizes=[31, 29, 27, 13], layers=[2, 2, 18, 2], channels=[128, 256, 1024], small_kernel=5, dw_ratio=1) RepLKNet(arch=arch) # len(strides) must equal to 4 with pytest.raises(AssertionError): RepLKNet('31B', strides=(2, 2, 2)) # len(dilations) must equal to 4 with pytest.raises(AssertionError): RepLKNet('31B', strides=(2, 2, 2, 2), dilations=(1, 1, 1)) # max(out_indices) < len(arch['num_blocks']) with pytest.raises(AssertionError): RepLKNet('31B', out_indices=(5, )) # Test RepLKNet norm state model = RepLKNet('31B') model.train() assert check_norm_state(model.modules(), True) # Test RepLKNet with first stage frozen frozen_stages = 1 model = RepLKNet('31B', frozen_stages=frozen_stages) model.train() for param in model.stem.parameters(): assert param.requires_grad is False for i in range(0, frozen_stages): stage = model.stages[i] for mod in stage.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in stage.parameters(): assert param.requires_grad is False # Test RepLKNet with norm_eval model = RepLKNet('31B', norm_eval=True) model.train() assert check_norm_state(model.modules(), False) # Test RepLKNet forward with layer 3 forward model = RepLKNet('31B', out_indices=(3, )) model.init_weights() model.train() for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert isinstance(feat, tuple) assert len(feat) == 1 assert isinstance(feat[0], torch.Tensor) assert feat[0].shape == torch.Size((1, 1024, 7, 7)) # Test RepLKNet forward model_test_settings = [ dict(model_name='31B', out_sizes=(128, 256, 512, 1024)), # dict(model_name='31L', out_sizes=(192, 384, 768, 1536)), # dict(model_name='XL', out_sizes=(256, 512, 1024, 2048)) ] choose_models = ['31B'] # Test RepLKNet model forward for model_test_setting in model_test_settings: if model_test_setting['model_name'] not in choose_models: continue model = RepLKNet( model_test_setting['model_name'], out_indices=(0, 1, 2, 3)) model.init_weights() # Test Norm for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat[0].shape == torch.Size( (1, model_test_setting['out_sizes'][0], 56, 56)) assert feat[1].shape == torch.Size( (1, model_test_setting['out_sizes'][1], 28, 28)) assert feat[2].shape == torch.Size( (1, model_test_setting['out_sizes'][2], 14, 14)) assert feat[3].shape == torch.Size( (1, model_test_setting['out_sizes'][3], 7, 7)) # Test eval of "train" mode and "deploy" mode gap = nn.AdaptiveAvgPool2d(output_size=(1)) fc = nn.Linear(model_test_setting['out_sizes'][3], 10) model.eval() feat = model(imgs) pred = fc(gap(feat[3]).flatten(1)) model.switch_to_deploy() for m in model.modules(): if isinstance(m, ReparamLargeKernelConv): assert m.small_kernel_merged is True feat_deploy = model(imgs) pred_deploy = fc(gap(feat_deploy[3]).flatten(1)) for i in range(4): torch.allclose(feat[i], feat_deploy[i]) torch.allclose(pred, pred_deploy) def test_replknet_load(): # Test output before and load from deploy checkpoint model = RepLKNet('31B', out_indices=(0, 1, 2, 3)) inputs = torch.randn((1, 3, 224, 224)) ckpt_path = os.path.join(tempfile.gettempdir(), 'ckpt.pth') model.switch_to_deploy() model.eval() outputs = model(inputs) model_deploy = RepLKNet( '31B', out_indices=(0, 1, 2, 3), small_kernel_merged=True) model_deploy.eval() save_checkpoint(model.state_dict(), ckpt_path) load_checkpoint(model_deploy, ckpt_path, strict=True) outputs_load = model_deploy(inputs) for feat, feat_load in zip(outputs, outputs_load): assert torch.allclose(feat, feat_load)