# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import MagicMock, patch import numpy as np import torch from mmpretrain.models import Mixup, RandomBatchAugment from mmpretrain.registry import BATCH_AUGMENTS class TestRandomBatchAugment(TestCase): def test_initialize(self): # test single augmentation augments = dict(type='Mixup', alpha=1.) batch_augments = RandomBatchAugment(augments) self.assertIsInstance(batch_augments.augments, list) self.assertEqual(len(batch_augments.augments), 1) # test specify augments with object augments = Mixup(alpha=1.) batch_augments = RandomBatchAugment(augments) self.assertIsInstance(batch_augments.augments, list) self.assertEqual(len(batch_augments.augments), 1) # test multiple augmentation augments = [ dict(type='Mixup', alpha=1.), dict(type='CutMix', alpha=0.8), ] batch_augments = RandomBatchAugment(augments) # mixup, cutmix self.assertEqual(len(batch_augments.augments), 2) self.assertIsNone(batch_augments.probs) # test specify probs augments = [ dict(type='Mixup', alpha=1.), dict(type='CutMix', alpha=0.8), ] batch_augments = RandomBatchAugment(augments, probs=[0.5, 0.3]) # mixup, cutmix and None self.assertEqual(len(batch_augments.augments), 3) self.assertAlmostEqual(batch_augments.probs[-1], 0.2) # test assertion with self.assertRaisesRegex(AssertionError, 'Got 2 vs 1'): RandomBatchAugment(augments, probs=0.5) with self.assertRaisesRegex(AssertionError, 'exceeds 1.'): RandomBatchAugment(augments, probs=[0.5, 0.6]) def test_call(self): inputs = torch.rand(2, 3, 224, 224) scores = torch.rand(2, 10) augments = [ dict(type='Mixup', alpha=1.), dict(type='CutMix', alpha=0.8), ] batch_augments = RandomBatchAugment(augments, probs=[0.5, 0.3]) with patch('numpy.random', np.random.RandomState(0)): batch_augments.augments[1] = MagicMock() batch_augments(inputs, scores) batch_augments.augments[1].assert_called_once_with(inputs, scores) augments = [ dict(type='Mixup', alpha=1.), dict(type='CutMix', alpha=0.8), ] batch_augments = RandomBatchAugment(augments, probs=[0.0, 0.0]) mixed_inputs, mixed_samples = batch_augments(inputs, scores) self.assertIs(mixed_inputs, inputs) self.assertIs(mixed_samples, scores) class TestMixup(TestCase): DEFAULT_ARGS = dict(type='Mixup', alpha=1.) def test_initialize(self): with self.assertRaises(AssertionError): cfg = {**self.DEFAULT_ARGS, 'alpha': 'unknown'} BATCH_AUGMENTS.build(cfg) def test_call(self): inputs = torch.rand(2, 3, 224, 224) scores = torch.rand(2, 10) mixup = BATCH_AUGMENTS.build(self.DEFAULT_ARGS) mixed_inputs, mixed_scores = mixup(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 10)) # test binary classification scores = torch.rand(2, 1) mixed_inputs, mixed_scores = mixup(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 1)) class TestCutMix(TestCase): DEFAULT_ARGS = dict(type='CutMix', alpha=1.) def test_initialize(self): with self.assertRaises(AssertionError): cfg = {**self.DEFAULT_ARGS, 'alpha': 'unknown'} BATCH_AUGMENTS.build(cfg) def test_call(self): inputs = torch.rand(2, 3, 224, 224) scores = torch.rand(2, 10) # test with cutmix_minmax cfg = {**self.DEFAULT_ARGS, 'cutmix_minmax': (0.1, 0.2)} cutmix = BATCH_AUGMENTS.build(cfg) mixed_inputs, mixed_scores = cutmix(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 10)) # test without correct_lam cfg = {**self.DEFAULT_ARGS, 'correct_lam': False} cutmix = BATCH_AUGMENTS.build(cfg) mixed_inputs, mixed_scores = cutmix(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 10)) # test default settings cutmix = BATCH_AUGMENTS.build(self.DEFAULT_ARGS) mixed_inputs, mixed_scores = cutmix(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 10)) # test binary classification scores = torch.rand(2, 1) mixed_inputs, mixed_scores = cutmix(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 1)) class TestResizeMix(TestCase): DEFAULT_ARGS = dict(type='ResizeMix', alpha=1.) def test_initialize(self): with self.assertRaises(AssertionError): cfg = {**self.DEFAULT_ARGS, 'alpha': 'unknown'} BATCH_AUGMENTS.build(cfg) def test_call(self): inputs = torch.rand(2, 3, 224, 224) scores = torch.rand(2, 10) mixup = BATCH_AUGMENTS.build(self.DEFAULT_ARGS) mixed_inputs, mixed_scores = mixup(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 10)) # test binary classification scores = torch.rand(2, 1) mixed_inputs, mixed_scores = mixup(inputs, scores) self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224)) self.assertEqual(mixed_scores.shape, (2, 1))