# Model settings model = dict( type='ImageClassifier', backbone=dict( type='ConvNeXt', arch='small', out_indices=(3, ), drop_path_rate=0.4, gap_before_final_norm=True, init_cfg=[ dict( type='TruncNormal', layer=['Conv2d', 'Linear'], std=.02, bias=0.), dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.), ]), head=dict( type='LinearClsHead', num_classes=1000, in_channels=768, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), ), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0), ]), )