_base_ = [ '../_base_/models/mobilevit/mobilevit_s.py', '../_base_/datasets/imagenet_bs32.py', '../_base_/default_runtime.py', '../_base_/schedules/imagenet_bs256.py', ] # no normalize for original implements data_preprocessor = dict( # RGB format normalization parameters mean=[0, 0, 0], std=[255, 255, 255], # use bgr directly to_rgb=False, ) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=288, edge='short'), dict(type='CenterCrop', crop_size=256), dict(type='PackClsInputs'), ] train_dataloader = dict(batch_size=128) val_dataloader = dict( batch_size=128, dataset=dict(pipeline=test_pipeline), ) test_dataloader = val_dataloader