# ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices ## Introduction ```latex @inproceedings{zhang2018shufflenet, title={Shufflenet: An extremely efficient convolutional neural network for mobile devices}, author={Zhang, Xiangyu and Zhou, Xinyu and Lin, Mengxiao and Sun, Jian}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={6848--6856}, year={2018} } ``` ## Results and models ### ImageNet | Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download | |:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:| | ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth) | [log](https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.log.json) |