import torch.nn as nn from mmcv.utils import Registry, build_from_cfg BACKBONES = Registry('backbone') MODELS = Registry('model') def build(cfg, registry, default_args=None): if isinstance(cfg, list): modules = [ build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg ] return nn.Sequential(*modules) else: return build_from_cfg(cfg, registry, default_args) def build_backbone(cfg): return build(cfg, BACKBONES) def build_model(cfg, train_cfg=None, test_cfg=None): return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg))