# dataset settings dataset_type = 'ImageNet' data_root = 'data/imagenet/' data_preprocessor = dict( type='SelfSupDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # The difference between mocov2 and mocov1 is the transforms in the pipeline view_pipeline = [ dict( type='RandomResizedCrop', size=224, scale=(0.2, 1.), backend='pillow'), dict( type='RandomApply', transforms=[ dict( type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1) ], prob=0.8), dict( type='RandomGrayscale', prob=0.2, keep_channels=True, channel_weights=(0.114, 0.587, 0.2989)), dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5), dict(type='RandomFlip', prob=0.5), ] train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='MultiView', num_views=2, transforms=[view_pipeline]), dict(type='PackSelfSupInputs', meta_keys=['img_path']) ] train_dataloader = dict( batch_size=32, num_workers=8, drop_last=True, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='meta/train.txt', data_prefix=dict(img_path='train/'), pipeline=train_pipeline))