import argparse import os import os.path as osp import pickle import re from collections import OrderedDict from datetime import datetime from pathlib import Path from modelindex.load_model_index import load from rich.console import Console from rich.syntax import Syntax from rich.table import Table console = Console() MMCLS_ROOT = Path(__file__).absolute().parents[2] METRICS_MAP = { 'Top 1 Accuracy': 'accuracy_top-1', 'Top 5 Accuracy': 'accuracy_top-5' } def parse_args(): parser = argparse.ArgumentParser( description="Test all models' accuracy in model-index.yml") parser.add_argument( 'partition', type=str, help='Cluster partition to use.') parser.add_argument('checkpoint_root', help='Checkpoint file root path.') parser.add_argument( '--job-name', type=str, default='cls-test-benchmark', help='Slurm job name prefix') parser.add_argument('--port', type=int, default=29666, help='dist port') parser.add_argument( '--models', nargs='+', type=str, help='Specify model names to run.') parser.add_argument( '--work-dir', default='work_dirs/benchmark_test', help='the dir to save metric') parser.add_argument( '--run', action='store_true', help='run script directly') parser.add_argument( '--local', action='store_true', help='run at local instead of cluster.') parser.add_argument( '--mail', type=str, help='Mail address to watch test status.') parser.add_argument( '--mail-type', nargs='+', default=['BEGIN'], choices=['NONE', 'BEGIN', 'END', 'FAIL', 'REQUEUE', 'ALL'], help='Mail address to watch test status.') parser.add_argument( '--quotatype', default=None, choices=['reserved', 'auto', 'spot'], help='Quota type, only available for phoenix-slurm>=0.2') parser.add_argument( '--summary', action='store_true', help='Summarize benchmark test results.') parser.add_argument('--save', action='store_true', help='Save the summary') args = parser.parse_args() return args def create_test_job_batch(commands, model_info, args, port, script_name): fname = model_info.name config = Path(model_info.config) assert config.exists(), f'{fname}: {config} not found.' http_prefix = 'https://download.openmmlab.com/mmclassification/' if 's3://' in args.checkpoint_root: from mmcv.fileio import FileClient from petrel_client.common.exception import AccessDeniedError file_client = FileClient.infer_client(uri=args.checkpoint_root) checkpoint = file_client.join_path( args.checkpoint_root, model_info.weights[len(http_prefix):]) try: exists = file_client.exists(checkpoint) except AccessDeniedError: exists = False else: checkpoint_root = Path(args.checkpoint_root) checkpoint = checkpoint_root / model_info.weights[len(http_prefix):] exists = checkpoint.exists() if not exists: print(f'WARNING: {fname}: {checkpoint} not found.') return None job_name = f'{args.job_name}_{fname}' work_dir = Path(args.work_dir) / fname work_dir.mkdir(parents=True, exist_ok=True) if args.mail is not None and 'NONE' not in args.mail_type: mail_cfg = (f'#SBATCH --mail {args.mail}\n' f'#SBATCH --mail-type {args.mail_type}\n') else: mail_cfg = '' if args.quotatype is not None: quota_cfg = f'#SBATCH --quotatype {args.quotatype}\n' else: quota_cfg = '' launcher = 'none' if args.local else 'slurm' runner = 'python' if args.local else 'srun python' job_script = (f'#!/bin/bash\n' f'#SBATCH --output {work_dir}/job.%j.out\n' f'#SBATCH --partition={args.partition}\n' f'#SBATCH --job-name {job_name}\n' f'#SBATCH --gres=gpu:8\n' f'{mail_cfg}{quota_cfg}' f'#SBATCH --ntasks-per-node=8\n' f'#SBATCH --ntasks=8\n' f'#SBATCH --cpus-per-task=5\n\n' f'{runner} -u {script_name} {config} {checkpoint} ' f'--out={work_dir / "result.pkl"} --metrics accuracy ' f'--out-items=none ' f'--cfg-option dist_params.port={port} ' f'--launcher={launcher}\n') with open(work_dir / 'job.sh', 'w') as f: f.write(job_script) commands.append(f'echo "{config}"') if args.local: commands.append(f'bash {work_dir}/job.sh') else: commands.append(f'sbatch {work_dir}/job.sh') return work_dir / 'job.sh' def test(args): # parse model-index.yml model_index_file = MMCLS_ROOT / 'model-index.yml' model_index = load(str(model_index_file)) model_index.build_models_with_collections() models = OrderedDict({model.name: model for model in model_index.models}) script_name = osp.join('tools', 'test.py') port = args.port commands = [] if args.models: patterns = [re.compile(pattern) for pattern in args.models] filter_models = {} for k, v in models.items(): if any([re.match(pattern, k) for pattern in patterns]): filter_models[k] = v if len(filter_models) == 0: print('No model found, please specify models in:') print('\n'.join(models.keys())) return models = filter_models preview_script = '' for model_info in models.values(): if model_info.results is None: continue script_path = create_test_job_batch(commands, model_info, args, port, script_name) preview_script = script_path or preview_script port += 1 command_str = '\n'.join(commands) preview = Table() preview.add_column(str(preview_script)) preview.add_column('Shell command preview') preview.add_row( Syntax.from_path( preview_script, background_color='default', line_numbers=True, word_wrap=True), Syntax( command_str, 'bash', background_color='default', line_numbers=True, word_wrap=True)) console.print(preview) if args.run: os.system(command_str) else: console.print('Please set "--run" to start the job') def save_summary(summary_data, models_map, work_dir): summary_path = work_dir / 'test_benchmark_summary.md' file = open(summary_path, 'w') headers = [ 'Model', 'Top-1 Expected(%)', 'Top-1 (%)', 'Top-5 Expected (%)', 'Top-5 (%)', 'Config' ] file.write('# Test Benchmark Regression Summary\n') file.write('| ' + ' | '.join(headers) + ' |\n') file.write('|:' + ':|:'.join(['---'] * len(headers)) + ':|\n') for model_name, summary in summary_data.items(): if len(summary) == 0: # Skip models without results continue row = [model_name] if 'Top 1 Accuracy' in summary: metric = summary['Top 1 Accuracy'] row.append(f"{metric['expect']:.2f}") row.append(f"{metric['result']:.2f}") else: row.extend([''] * 2) if 'Top 5 Accuracy' in summary: metric = summary['Top 5 Accuracy'] row.append(f"{metric['expect']:.2f}") row.append(f"{metric['result']:.2f}") else: row.extend([''] * 2) model_info = models_map[model_name] row.append(model_info.config) file.write('| ' + ' | '.join(row) + ' |\n') file.close() print('Summary file saved at ' + str(summary_path)) def show_summary(summary_data): table = Table(title='Test Benchmark Regression Summary') table.add_column('Model') for metric in METRICS_MAP: table.add_column(f'{metric} (expect)') table.add_column(f'{metric}') table.add_column('Date') def set_color(value, expect): if value > expect + 0.01: return 'green' elif value >= expect - 0.01: return 'white' else: return 'red' for model_name, summary in summary_data.items(): row = [model_name] for metric_key in METRICS_MAP: if metric_key in summary: metric = summary[metric_key] expect = metric['expect'] result = metric['result'] color = set_color(result, expect) row.append(f'{expect:.2f}') row.append(f'[{color}]{result:.2f}[/{color}]') else: row.extend([''] * 2) if 'date' in summary: row.append(summary['date']) else: row.append('') table.add_row(*row) console.print(table) def summary(args): model_index_file = MMCLS_ROOT / 'model-index.yml' model_index = load(str(model_index_file)) model_index.build_models_with_collections() models = OrderedDict({model.name: model for model in model_index.models}) work_dir = Path(args.work_dir) if args.models: patterns = [re.compile(pattern) for pattern in args.models] filter_models = {} for k, v in models.items(): if any([re.match(pattern, k) for pattern in patterns]): filter_models[k] = v if len(filter_models) == 0: print('No model found, please specify models in:') print('\n'.join(models.keys())) return models = filter_models summary_data = {} for model_name, model_info in models.items(): if model_info.results is None: continue # Skip if not found result file. result_file = work_dir / model_name / 'result.pkl' if not result_file.exists(): summary_data[model_name] = {} continue with open(result_file, 'rb') as file: results = pickle.load(file) date = datetime.fromtimestamp(result_file.lstat().st_mtime) expect_metrics = model_info.results[0].metrics # extract metrics summary = {'date': date.strftime('%Y-%m-%d')} for key_yml, key_res in METRICS_MAP.items(): if key_yml in expect_metrics: assert key_res in results, \ f'{model_name}: No metric "{key_res}"' expect_result = float(expect_metrics[key_yml]) result = float(results[key_res]) summary[key_yml] = dict(expect=expect_result, result=result) summary_data[model_name] = summary show_summary(summary_data) if args.save: save_summary(summary_data, models, work_dir) def main(): args = parse_args() if args.summary: summary(args) else: test(args) if __name__ == '__main__': main()