Collections: - Name: ResNeXt Metadata: Training Data: ImageNet-1k Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Epochs: 100 Batch Size: 256 Architecture: - ResNeXt Paper: https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html README: configs/resnext/README.md Models: - Name: resnext50_32x4d_b32x8_imagenet Metadata: FLOPs: 4270000000 Parameters: 25030000 In Collection: ResNeXt Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 77.92 Top 5 Accuracy: 93.74 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_batch256_imagenet_20200708-c07adbb7.pth Config: configs/resnext/resnext50_32x4d_b32x8_imagenet.py - Name: resnext101_32x4d_b32x8_imagenet Metadata: FLOPs: 8030000000 Parameters: 44180000 In Collection: ResNeXt Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 78.7 Top 5 Accuracy: 94.34 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_batch256_imagenet_20200708-87f2d1c9.pth Config: configs/resnext/resnext101_32x4d_b32x8_imagenet.py - Name: resnext101_32x8d_b32x8_imagenet Metadata: FLOPs: 16500000000 Parameters: 88790000 In Collection: ResNeXt Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 79.22 Top 5 Accuracy: 94.52 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_batch256_imagenet_20200708-1ec34aa7.pth Config: configs/resnext/resnext101_32x8d_b32x8_imagenet.py - Name: resnext152_32x4d_b32x8_imagenet Metadata: FLOPs: 11800000000 Parameters: 59950000 In Collection: ResNeXt Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 79.06 Top 5 Accuracy: 94.47 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_batch256_imagenet_20200708-aab5034c.pth Config: configs/resnext/resnext152_32x4d_b32x8_imagenet.py