# Changelog ## v0.18.0(30/11/2021) ### Highlights - Support MLP-Mixer backbone and provide pre-trained checkpoints. - Add a tool to visualize the learning rate curve of the training phase. Welcome to use with the [tutorial](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization)! ### New Features - Add MLP Mixer Backbone. ([#528](https://github.com/open-mmlab/mmclassification/pull/528), [#539](https://github.com/open-mmlab/mmclassification/pull/539)) - Support positive weights in BCE. ([#516](https://github.com/open-mmlab/mmclassification/pull/516)) - Add a tool to visualize learning rate in each iterations. ([#498](https://github.com/open-mmlab/mmclassification/pull/498)) ### Improvements - Use CircleCI to do unit tests. ([#567](https://github.com/open-mmlab/mmclassification/pull/567)) - Focal loss for single label tasks. ([#548](https://github.com/open-mmlab/mmclassification/pull/548)) - Remove useless `import_modules_from_string`. ([#544](https://github.com/open-mmlab/mmclassification/pull/544)) - Rename config files according to the config name standard. ([#508](https://github.com/open-mmlab/mmclassification/pull/508)) - Use `reset_classifier` to remove head of timm backbones. ([#534](https://github.com/open-mmlab/mmclassification/pull/534)) - Support passing arguments to loss from head. ([#523](https://github.com/open-mmlab/mmclassification/pull/523)) - Refactor `Resize` transform and add `Pad` transform. ([#506](https://github.com/open-mmlab/mmclassification/pull/506)) - Update mmcv dependency version. ([#509](https://github.com/open-mmlab/mmclassification/pull/509)) ### Bug Fixes - Fix bug when using `ClassBalancedDataset`. ([#555](https://github.com/open-mmlab/mmclassification/pull/555)) - Fix a bug when using iter-based runner with 'val' workflow. ([#542](https://github.com/open-mmlab/mmclassification/pull/542)) - Fix interpolation method checking in `Resize`. ([#547](https://github.com/open-mmlab/mmclassification/pull/547)) - Fix a bug when load checkpoints in mulit-GPUs environment. ([#527](https://github.com/open-mmlab/mmclassification/pull/527)) - Fix an error on indexing scalar metrics in `analyze_result.py`. ([#518](https://github.com/open-mmlab/mmclassification/pull/518)) - Fix wrong condition judgment in `analyze_logs.py` and prevent empty curve. ([#510](https://github.com/open-mmlab/mmclassification/pull/510)) ### Docs Update - Fix vit config and model broken links. ([#564](https://github.com/open-mmlab/mmclassification/pull/564)) - Add abstract and image for every paper. ([#546](https://github.com/open-mmlab/mmclassification/pull/546)) - Add mmflow and mim in banner and readme. ([#543](https://github.com/open-mmlab/mmclassification/pull/543)) - Add schedule and runtime tutorial docs. ([#499](https://github.com/open-mmlab/mmclassification/pull/499)) - Add the top-5 acc in ResNet-CIFAR README. ([#531](https://github.com/open-mmlab/mmclassification/pull/531)) - Fix TOC of `visualization.md` and add example images. ([#513](https://github.com/open-mmlab/mmclassification/pull/513)) - Use docs link of other projects and add MMCV docs. ([#511](https://github.com/open-mmlab/mmclassification/pull/511)) ## v0.17.0(29/10/2021) ### Highlights - Support Tokens-to-Token ViT backbone and Res2Net backbone. Welcome to use! - Support ImageNet21k dataset. - Add a pipeline visualization tool. Try it with the [tutorials](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#pipeline-visualization)! ### New Features - Add Tokens-to-Token ViT backbone and converted checkpoints. ([#467](https://github.com/open-mmlab/mmclassification/pull/467)) - Add Res2Net backbone and converted weights. ([#465](https://github.com/open-mmlab/mmclassification/pull/465)) - Support ImageNet21k dataset. ([#461](https://github.com/open-mmlab/mmclassification/pull/461)) - Support seesaw loss. ([#500](https://github.com/open-mmlab/mmclassification/pull/500)) - Add a pipeline visualization tool. ([#406](https://github.com/open-mmlab/mmclassification/pull/406)) - Add a tool to find broken files. ([#482](https://github.com/open-mmlab/mmclassification/pull/482)) - Add a tool to test TorchServe. ([#468](https://github.com/open-mmlab/mmclassification/pull/468)) ### Improvements - Refator Vision Transformer. ([#395](https://github.com/open-mmlab/mmclassification/pull/395)) - Use context manager to reuse matplotlib figures. ([#432](https://github.com/open-mmlab/mmclassification/pull/432)) ### Bug Fixes - Remove `DistSamplerSeedHook` if use `IterBasedRunner`. ([#501](https://github.com/open-mmlab/mmclassification/pull/501)) - Set the priority of `EvalHook` to "LOW" to avoid a bug when using `IterBasedRunner`. ([#488](https://github.com/open-mmlab/mmclassification/pull/488)) - Fix a wrong parameter of `get_root_logger` in `apis/train.py`. ([#486](https://github.com/open-mmlab/mmclassification/pull/486)) - Fix version check in dataset builder. ([#474](https://github.com/open-mmlab/mmclassification/pull/474)) ### Docs Update - Add English Colab tutorials and update Chinese Colab tutorials. ([#483](https://github.com/open-mmlab/mmclassification/pull/483), [#497](https://github.com/open-mmlab/mmclassification/pull/497)) - Add tutuorial for config files. ([#487](https://github.com/open-mmlab/mmclassification/pull/487)) - Add model-pages in Model Zoo. ([#480](https://github.com/open-mmlab/mmclassification/pull/480)) - Add code-spell pre-commit hook and fix a large mount of typos. ([#470](https://github.com/open-mmlab/mmclassification/pull/470)) ## v0.16.0(30/9/2021) ### Highlights - We have improved compatibility with downstream repositories like MMDetection and MMSegmentation. We will add some examples about how to use our backbones in MMDetection. - Add RepVGG backbone and checkpoints. Welcome to use it! - Add timm backbones wrapper, now you can simply use backbones of pytorch-image-models in MMClassification! ### New Features - Add RepVGG backbone and checkpoints. ([#414](https://github.com/open-mmlab/mmclassification/pull/414)) - Add timm backbones wrapper. ([#427](https://github.com/open-mmlab/mmclassification/pull/427)) ### Improvements - Fix TnT compatibility and verbose warning. ([#436](https://github.com/open-mmlab/mmclassification/pull/436)) - Support setting `--out-items` in `tools/test.py`. ([#437](https://github.com/open-mmlab/mmclassification/pull/437)) - Add datetime info and saving model using torch<1.6 format. ([#439](https://github.com/open-mmlab/mmclassification/pull/439)) - Improve downstream repositories compatibility. ([#421](https://github.com/open-mmlab/mmclassification/pull/421)) - Rename the option `--options` to `--cfg-options` in some tools. ([#425](https://github.com/open-mmlab/mmclassification/pull/425)) - Add PyTorch 1.9 and Python 3.9 build workflow, and remove some CI. ([#422](https://github.com/open-mmlab/mmclassification/pull/422)) ### Bug Fixes - Fix format error in `test.py` when metric returns `np.ndarray`. ([#441](https://github.com/open-mmlab/mmclassification/pull/441)) - Fix `publish_model` bug if no parent of `out_file`. ([#463](https://github.com/open-mmlab/mmclassification/pull/463)) - Fix num_classes bug in pytorch2onnx.py. ([#458](https://github.com/open-mmlab/mmclassification/pull/458)) - Fix missing runtime requirement `packaging`. ([#459](https://github.com/open-mmlab/mmclassification/pull/459)) - Fix saving simplified model bug in ONNX export tool. ([#438](https://github.com/open-mmlab/mmclassification/pull/438)) ### Docs Update - Update `getting_started.md` and `install.md`. And rewrite `finetune.md`. ([#466](https://github.com/open-mmlab/mmclassification/pull/466)) - Use PyTorch style docs theme. ([#457](https://github.com/open-mmlab/mmclassification/pull/457)) - Update metafile and Readme. ([#435](https://github.com/open-mmlab/mmclassification/pull/435)) - Add `CITATION.cff`. ([#428](https://github.com/open-mmlab/mmclassification/pull/428)) ## v0.15.0(31/8/2021) ### Highlights - Support `hparams` argument in `AutoAugment` and `RandAugment` to provide hyperparameters for sub-policies. - Support custom squeeze channels in `SELayer`. - Support classwise weight in losses. ### New Features - Add `hparams` argument in `AutoAugment` and `RandAugment` and some other improvement. ([#398](https://github.com/open-mmlab/mmclassification/pull/398)) - Support classwise weight in losses. ([#388](https://github.com/open-mmlab/mmclassification/pull/388)) - Enhance `SELayer` to support custom squeeze channels. ([#417](https://github.com/open-mmlab/mmclassification/pull/417)) ### Code Refactor - Better result visualization. ([#419](https://github.com/open-mmlab/mmclassification/pull/419)) - Use `post_process` function to handle pred result processing. ([#390](https://github.com/open-mmlab/mmclassification/pull/390)) - Update `digit_version` function. ([#402](https://github.com/open-mmlab/mmclassification/pull/402)) - Avoid albumentations to install both opencv and opencv-headless. ([#397](https://github.com/open-mmlab/mmclassification/pull/397)) - Avoid unnecessary listdir when building ImageNet. ([#396](https://github.com/open-mmlab/mmclassification/pull/396)) - Use dynamic mmcv download link in TorchServe dockerfile. ([#387](https://github.com/open-mmlab/mmclassification/pull/387)) ### Docs Improvement - Add readme of some algorithms and update meta yml. ([#418](https://github.com/open-mmlab/mmclassification/pull/418)) - Add Copyright information. ([#413](https://github.com/open-mmlab/mmclassification/pull/413)) - Fix typo 'metirc'. ([#411](https://github.com/open-mmlab/mmclassification/pull/411)) - Update QQ group QR code. ([#393](https://github.com/open-mmlab/mmclassification/pull/393)) - Add PR template and modify issue template. ([#380](https://github.com/open-mmlab/mmclassification/pull/380)) ## v0.14.0(4/8/2021) ### Highlights - Add transformer-in-transformer backbone and pretrain checkpoints, refers to [the paper](https://arxiv.org/abs/2103.00112). - Add Chinese colab tutorial. - Provide dockerfile to build mmcls dev docker image. ### New Features - Add transformer in transformer backbone and pretrain checkpoints. ([#339](https://github.com/open-mmlab/mmclassification/pull/339)) - Support mim, welcome to use mim to manage your mmcls project. ([#376](https://github.com/open-mmlab/mmclassification/pull/376)) - Add Dockerfile. ([#365](https://github.com/open-mmlab/mmclassification/pull/365)) - Add ResNeSt configs. ([#332](https://github.com/open-mmlab/mmclassification/pull/332)) ### Improvements - Use the `presistent_works` option if available, to accelerate training. ([#349](https://github.com/open-mmlab/mmclassification/pull/349)) - Add Chinese ipynb tutorial. ([#306](https://github.com/open-mmlab/mmclassification/pull/306)) - Refactor unit tests. ([#321](https://github.com/open-mmlab/mmclassification/pull/321)) - Support to test mmdet inference with mmcls backbone. ([#343](https://github.com/open-mmlab/mmclassification/pull/343)) - Use zero as default value of `thrs` in metrics. ([#341](https://github.com/open-mmlab/mmclassification/pull/341)) ### Bug Fixes - Fix ImageNet dataset annotation file parse bug. ([#370](https://github.com/open-mmlab/mmclassification/pull/370)) - Fix docstring typo and init bug in ShuffleNetV1. ([#374](https://github.com/open-mmlab/mmclassification/pull/374)) - Use local ATTENTION registry to avoid conflict with other repositories. ([#376](https://github.com/open-mmlab/mmclassification/pull/375)) - Fix swin transformer config bug. ([#355](https://github.com/open-mmlab/mmclassification/pull/355)) - Fix `patch_cfg` argument bug in SwinTransformer. ([#368](https://github.com/open-mmlab/mmclassification/pull/368)) - Fix duplicate `init_weights` call in ViT init function. ([#373](https://github.com/open-mmlab/mmclassification/pull/373)) - Fix broken `_base_` link in a resnet config. ([#361](https://github.com/open-mmlab/mmclassification/pull/361)) - Fix vgg-19 model link missing. ([#363](https://github.com/open-mmlab/mmclassification/pull/363)) ## v0.13.0(3/7/2021) - Support Swin-Transformer backbone and add training configs for Swin-Transformer on ImageNet. ### New Features - Support Swin-Transformer backbone and add training configs for Swin-Transformer on ImageNet. (#271) - Add pretained model of RegNetX. (#269) - Support adding custom hooks in config file. (#305) - Improve and add Chinese translation of `CONTRIBUTING.md` and all tools tutorials. (#320) - Dump config before training. (#282) - Add torchscript and torchserve deployment tools. (#279, #284) ### Improvements - Improve test tools and add some new tools. (#322) - Correct MobilenetV3 backbone structure and add pretained models. (#291) - Refactor `PatchEmbed` and `HybridEmbed` as independent components. (#330) - Refactor mixup and cutmix as `Augments` to support more functions. (#278) - Refactor weights initialization method. (#270, #318, #319) - Refactor `LabelSmoothLoss` to support multiple calculation formulas. (#285) ### Bug Fixes - Fix bug for CPU training. (#286) - Fix missing test data when `num_imgs` can not be evenly divided by `num_gpus`. (#299) - Fix build compatible with pytorch v1.3-1.5. (#301) - Fix `magnitude_std` bug in `RandAugment`. (#309) - Fix bug when `samples_per_gpu` is 1. (#311) ## v0.12.0(3/6/2021) - Finish adding Chinese tutorials and build Chinese documentation on readthedocs. - Update ResNeXt checkpoints and ResNet checkpoints on CIFAR. ### New Features - Improve and add Chinese translation of `data_pipeline.md` and `new_modules.md`. (#265) - Build Chinese translation on readthedocs. (#267) - Add an argument efficientnet_style to `RandomResizedCrop` and `CenterCrop`. (#268) ### Improvements - Only allow directory operation when rank==0 when testing. (#258) - Fix typo in `base_head`. (#274) - Update ResNeXt checkpoints. (#283) ### Bug Fixes - Add attribute `data.test` in MNIST configs. (#264) - Download CIFAR/MNIST dataset only on rank 0. (#273) - Fix MMCV version compatibility. (#276) - Fix CIFAR color channels bug and update checkpoints in model zoo. (#280) ## v0.11.1(21/5/2021) - Refine `new_dataset.md` and add Chinese translation of `finture.md`, `new_dataset.md`. ### New Features - Add `dim` argument for `GlobalAveragePooling`. (#236) - Add random noise to `RandAugment` magnitude. (#240) - Refine `new_dataset.md` and add Chinese translation of `finture.md`, `new_dataset.md`. (#243) ### Improvements - Refactor arguments passing for Heads. (#239) - Allow more flexible `magnitude_range` in `RandAugment`. (#249) - Inherits MMCV registry so that in the future OpenMMLab repos like MMDet and MMSeg could directly use the backbones supported in MMCls. (#252) ### Bug Fixes - Fix typo in `analyze_results.py`. (#237) - Fix typo in unittests. (#238) - Check if specified tmpdir exists when testing to avoid deleting existing data. (#242 & #258) - Add missing config files in `MANIFEST.in`. (#250 & #255) - Use temporary directory under shared directory to collect results to avoid unavailability of temporary directory for multi-node testing. (#251) ## v0.11.0(1/5/2021) - Support cutmix trick. - Support random augmentation. - Add `tools/deployment/test.py` as a ONNX runtime test tool. - Support ViT backbone and add training configs for ViT on ImageNet. - Add Chinese `README.md` and some Chinese tutorials. ### New Features - Support cutmix trick. (#198) - Add `simplify` option in `pytorch2onnx.py`. (#200) - Support random augmentation. (#201) - Add config and checkpoint for training ResNet on CIFAR-100. (#208) - Add `tools/deployment/test.py` as a ONNX runtime test tool. (#212) - Support ViT backbone and add training configs for ViT on ImageNet. (#214) - Add finetuning configs for ViT on ImageNet. (#217) - Add `device` option to support training on CPU. (#219) - Add Chinese `README.md` and some Chinese tutorials. (#221) - Add `metafile.yml` in configs to support interaction with paper with code(PWC) and MMCLI. (#225) - Upload configs and converted checkpoints for ViT fintuning on ImageNet. (#230) ### Improvements - Fix `LabelSmoothLoss` so that label smoothing and mixup could be enabled at the same time. (#203) - Add `cal_acc` option in `ClsHead`. (#206) - Check `CLASSES` in checkpoint to avoid unexpected key error. (#207) - Check mmcv version when importing mmcls to ensure compatibility. (#209) - Update `CONTRIBUTING.md` to align with that in MMCV. (#210) - Change tags to html comments in configs README.md. (#226) - Clean codes in ViT backbone. (#227) - Reformat `pytorch2onnx.md` tutorial. (#229) - Update `setup.py` to support MMCLI. (#232) ### Bug Fixes - Fix missing `cutmix_prob` in ViT configs. (#220) - Fix backend for resize in ResNeXt configs. (#222) ## v0.10.0(1/4/2021) - Support AutoAugmentation - Add tutorials for installation and usage. ### New Features - Add `Rotate` pipeline for data augmentation. (#167) - Add `Invert` pipeline for data augmentation. (#168) - Add `Color` pipeline for data augmentation. (#171) - Add `Solarize` and `Posterize` pipeline for data augmentation. (#172) - Support fp16 training. (#178) - Add tutorials for installation and basic usage of MMClassification.(#176) - Support `AutoAugmentation`, `AutoContrast`, `Equalize`, `Contrast`, `Brightness` and `Sharpness` pipelines for data augmentation. (#179) ### Improvements - Support dynamic shape export to onnx. (#175) - Release training configs and update model zoo for fp16 (#184) - Use MMCV's EvalHook in MMClassification (#182) ### Bug Fixes - Fix wrong naming in vgg config (#181) ## v0.9.0(1/3/2021) - Implement mixup trick. - Add a new tool to create TensorRT engine from ONNX, run inference and verify outputs in Python. ### New Features - Implement mixup and provide configs of training ResNet50 using mixup. (#160) - Add `Shear` pipeline for data augmentation. (#163) - Add `Translate` pipeline for data augmentation. (#165) - Add `tools/onnx2tensorrt.py` as a tool to create TensorRT engine from ONNX, run inference and verify outputs in Python. (#153) ### Improvements - Add `--eval-options` in `tools/test.py` to support eval options override, matching the behavior of other open-mmlab projects. (#158) - Support showing and saving painted results in `mmcls.apis.test` and `tools/test.py`, matching the behavior of other open-mmlab projects. (#162) ### Bug Fixes - Fix configs for VGG, replace checkpoints converted from other repos with the ones trained by ourselves and upload the missing logs in the model zoo. (#161) ## v0.8.0(31/1/2021) - Support multi-label task. - Support more flexible metrics settings. - Fix bugs. ### New Features - Add evaluation metrics: mAP, CP, CR, CF1, OP, OR, OF1 for multi-label task. (#123) - Add BCE loss for multi-label task. (#130) - Add focal loss for multi-label task. (#131) - Support PASCAL VOC 2007 dataset for multi-label task. (#134) - Add asymmetric loss for multi-label task. (#132) - Add analyze_results.py to select images for success/fail demonstration. (#142) - Support new metric that calculates the total number of occurrences of each label. (#143) - Support class-wise evaluation results. (#143) - Add thresholds in eval_metrics. (#146) - Add heads and a baseline config for multilabel task. (#145) ### Improvements - Remove the models with 0 checkpoint and ignore the repeated papers when counting papers to gain more accurate model statistics. (#135) - Add tags in README.md. (#137) - Fix optional issues in docstring. (#138) - Update stat.py to classify papers. (#139) - Fix mismatched columns in README.md. (#150) - Fix test.py to support more evaluation metrics. (#155) ### Bug Fixes - Fix bug in VGG weight_init. (#140) - Fix bug in 2 ResNet configs in which outdated heads were used. (#147) - Fix bug of misordered height and width in `RandomCrop` and `RandomResizedCrop`. (#151) - Fix missing `meta_keys` in `Collect`. (#149 & #152) ## v0.7.0(31/12/2020) - Add more evaluation metrics. - Fix bugs. ### New Features - Remove installation of MMCV from requirements. (#90) - Add 3 evaluation metrics: precision, recall and F-1 score. (#93) - Allow config override during testing and inference with `--options`. (#91 & #96) ### Improvements - Use `build_runner` to make runners more flexible. (#54) - Support to get category ids in `BaseDataset`. (#72) - Allow `CLASSES` override during `BaseDateset` initialization. (#85) - Allow input image as ndarray during inference. (#87) - Optimize MNIST config. (#98) - Add config links in model zoo documentation. (#99) - Use functions from MMCV to collect environment. (#103) - Refactor config files so that they are now categorized by methods. (#116) - Add README in config directory. (#117) - Add model statistics. (#119) - Refactor documentation in consistency with other MM repositories. (#126) ### Bug Fixes - Add missing `CLASSES` argument to dataset wrappers. (#66) - Fix slurm evaluation error during training. (#69) - Resolve error caused by shape in `Accuracy`. (#104) - Fix bug caused by extremely insufficient data in distributed sampler.(#108) - Fix bug in `gpu_ids` in distributed training. (#107) - Fix bug caused by extremely insufficient data in collect results during testing (#114) ## v0.6.0(11/10/2020) - Support new method: ResNeSt and VGG. - Support new dataset: CIFAR10. - Provide new tools to do model inference, model conversion from pytorch to onnx. ### New Features - Add model inference. (#16) - Add pytorch2onnx. (#20) - Add PIL backend for transform `Resize`. (#21) - Add ResNeSt. (#25) - Add VGG and its pretained models. (#27) - Add CIFAR10 configs and models. (#38) - Add albumentations transforms. (#45) - Visualize results on image demo. (#58) ### Improvements - Replace urlretrieve with urlopen in dataset.utils. (#13) - Resize image according to its short edge. (#22) - Update ShuffleNet config. (#31) - Update pre-trained models for shufflenet_v2, shufflenet_v1, se-resnet50, se-resnet101. (#33) ### Bug Fixes - Fix init_weights in `shufflenet_v2.py`. (#29) - Fix the parameter `size` in test_pipeline. (#30) - Fix the parameter in cosine lr schedule. (#32) - Fix the convert tools for mobilenet_v2. (#34) - Fix crash in CenterCrop transform when image is greyscale (#40) - Fix outdated configs. (#53)