# model settings model = dict( type='ImageClassifier', backbone=dict( type='ResNet_CIFAR', depth=50, num_stages=4, out_indices=(3, ), style='pytorch'), neck=dict(type='GlobalAveragePooling'), head=dict( type='MultiLabelLinearClsHead', num_classes=10, in_channels=2048, loss=dict(type='CrossEntropyLoss', loss_weight=1.0, use_soft=True)), train_cfg=dict( augments=dict(type='BatchCutMix', alpha=1.0, num_classes=10, prob=1.0)))