# dataset settings dataset_type = 'CUB' preprocess_cfg = dict( # RGB format normalization parameters mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], # convert image from BGR to RGB to_rgb=True, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=510), dict(type='RandomCrop', crop_size=384), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackClsInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=510), dict(type='CenterCrop', crop_size=384), dict(type='PackClsInputs'), ] common_data_cfg = dict( type=dataset_type, data_root='data/CUB_200_2011', ann_file='images.txt', image_class_labels_file='image_class_labels.txt', train_test_split_file='train_test_split.txt', data_prefix='images', ) train_dataloader = dict( batch_size=8, num_workers=2, dataset=dict(**common_data_cfg, test_mode=False, pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), persistent_workers=True, ) val_dataloader = dict( batch_size=8, num_workers=2, dataset=dict(**common_data_cfg, test_mode=True, pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, ) val_evaluator = dict(type='Accuracy', topk=(1, )) test_dataloader = val_dataloader test_evaluator = val_evaluator