_base_ = [ '../_base_/datasets/imagenet_bs256_beitv2.py', '../_base_/default_runtime.py', ] # model settings vqkd_encoder = dict( arch='base', img_size=224, patch_size=16, in_channels=3, out_indices=-1, drop_rate=0., drop_path_rate=0., norm_cfg=dict(type='LN', eps=1e-6), final_norm=True, out_type='featmap', with_cls_token=True, frozen_stages=-1, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, layer_scale_init_value=0., interpolate_mode='bicubic', patch_cfg=dict(), layer_cfgs=dict(), init_cfg=None) layer_scale_init_value = 0.1 drop_path_rate = 0. # 0. for 300 epochs and 0.1 for 1600 epochs. model = dict( type='BEiT', backbone=dict( type='BEiTPretrainViT', arch='base', patch_size=16, out_indices=[-4, -1], drop_path_rate=drop_path_rate, final_norm=False, layer_scale_init_value=layer_scale_init_value, init_cfg=[ dict(type='TruncNormal', std=0.02, layer='Linear'), dict(type='TruncNormal', std=0.02, layer='Conv2d'), dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0) ]), neck=dict( type='BEiTV2Neck', num_layers=2, early_layers=9, backbone_arch='base', drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value, ), head=dict( type='BEiTV2Head', embed_dims=768, num_embed=8192, loss=dict(type='CrossEntropyLoss')), target_generator=dict( type='VQKD', encoder_config=vqkd_encoder, init_cfg=dict( type='Pretrained', checkpoint= # noqa 'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/vqkd_encoder.pth' # noqa ))) # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', # betas: (0.9, 0.98) for 300 epochs and (0.9, 0.999) for 1600 epochs. optimizer=dict( type='AdamW', lr=1.5e-3, betas=(0.9, 0.98), weight_decay=0.05), clip_grad=dict(max_norm=3.0), paramwise_cfg=dict( custom_keys={ # the following configurations are designed for BEiT '.ln': dict(decay_mult=0.0), '.bias': dict(decay_mult=0.0), 'q_bias': dict(decay_mult=0.0), 'v_bias': dict(decay_mult=0.0), '.cls_token': dict(decay_mult=0.0), '.pos_embed': dict(decay_mult=0.0), '.gamma': dict(decay_mult=0.0), })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=10, convert_to_iter_based=True), dict( type='CosineAnnealingLR', eta_min=1e-5, by_epoch=True, begin=10, end=300, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) find_unused_parameters = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=2048)