_base_ = [ '../../_base_/datasets/imagenet_bs64_swin_224.py', '../../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../../_base_/default_runtime.py' ] # CAE fine-tuning setting # dataset data_preprocessor = dict( num_classes=1000, # RGB format normalization parameters mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], # convert image from BGR to RGB to_rgb=True, ) bgr_mean = data_preprocessor['mean'][::-1] bgr_std = data_preprocessor['std'][::-1] train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='RandAugment', policies='timm_increasing', num_policies=2, total_level=10, magnitude_level=9, magnitude_std=0.5, hparams=dict( pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, fill_color=bgr_mean, fill_std=bgr_std), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=256, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=224), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline), batch_size=128) val_dataloader = dict(dataset=dict(pipeline=test_pipeline), batch_size=128) # model settings model = dict( type='ImageClassifier', backbone=dict( type='BEiTViT', arch='base', img_size=224, patch_size=16, final_norm=False, # do not use final norm drop_path_rate=0.1, layer_scale_init_value=0.1, out_type='avg_featmap', use_abs_pos_emb=True, use_rel_pos_bias=True, use_shared_rel_pos_bias=False, init_cfg=dict(type='Pretrained', checkpoint='')), neck=None, head=dict( type='LinearClsHead', num_classes=1000, in_channels=768, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), init_cfg=dict(type='TruncNormal', layer='Linear', std=2e-5)), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0) ])) # optimizer wrapper optim_wrapper = dict( optimizer=dict( type='AdamW', lr=8e-3, betas=(0.9, 0.999), weight_decay=0.05), constructor='LearningRateDecayOptimWrapperConstructor', paramwise_cfg=dict( layer_decay_rate=0.65, custom_keys={ '.ln': dict(decay_mult=0.0), '.bias': dict(decay_mult=0.0), '.cls_token': dict(decay_mult=0.0), '.pos_embed': dict(decay_mult=0.0) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=5, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=95, by_epoch=True, begin=5, end=100, eta_min=1e-6, convert_to_iter_based=True) ] default_hooks = dict( # save checkpoint per epoch. checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) train_cfg = dict(by_epoch=True, max_epochs=100) randomness = dict(seed=0)