# Copyright (c) OpenMMLab. All rights reserved. import platform from unittest import TestCase import pytest import torch from mmpretrain.models import MoCoV3, MoCoV3ViT from mmpretrain.structures import DataSample class TestMoCoV3(TestCase): backbone = dict( type='MoCoV3ViT', arch='mocov3-small', # embed_dim = 384 patch_size=16, frozen_stages=12, stop_grad_conv1=True, norm_eval=True) neck = dict( type='NonLinearNeck', in_channels=384, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False, norm_cfg=dict(type='BN1d')) head = dict( type='MoCoV3Head', predictor=dict( type='NonLinearNeck', in_channels=2, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False, norm_cfg=dict(type='BN1d')), loss=dict(type='CrossEntropyLoss', loss_weight=2 * 0.2), temperature=0.2) @pytest.mark.skipif( platform.system() == 'Windows', reason='Windows mem limit') def test_vit(self): vit = MoCoV3ViT( arch='mocov3-small', patch_size=16, frozen_stages=12, stop_grad_conv1=True, norm_eval=True) vit.init_weights() vit.train() for p in vit.parameters(): assert p.requires_grad is False @pytest.mark.skipif( platform.system() == 'Windows', reason='Windows mem limit') def test_mocov3(self): data_preprocessor = dict( mean=(123.675, 116.28, 103.53), std=(58.395, 57.12, 57.375), to_rgb=True) alg = MoCoV3( backbone=self.backbone, neck=self.neck, head=self.head, data_preprocessor=data_preprocessor) fake_data = { 'inputs': [torch.randn((2, 3, 224, 224)), torch.randn((2, 3, 224, 224))], 'data_samples': [DataSample() for _ in range(2)] } fake_inputs = alg.data_preprocessor(fake_data) fake_loss = alg(**fake_inputs, mode='loss') self.assertGreater(fake_loss['loss'], 0) # test extract fake_feats = alg(fake_inputs['inputs'][0], mode='tensor') self.assertEqual(fake_feats[0].size(), torch.Size([2, 384]))