# Copyright (c) OpenMMLab. All rights reserved. import copy import warnings from ..builder import CLASSIFIERS, build_backbone, build_head, build_neck from ..utils.augment import Augments from .base import BaseClassifier warnings.simplefilter('once') @CLASSIFIERS.register_module() class ImageClassifier(BaseClassifier): def __init__(self, backbone, neck=None, head=None, pretrained=None, train_cfg=None, init_cfg=None): super(ImageClassifier, self).__init__(init_cfg) if pretrained is not None: warnings.warn('DeprecationWarning: pretrained is a deprecated \ key, please consider using init_cfg') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) return_tuple = backbone.pop('return_tuple', True) self.backbone = build_backbone(backbone) if return_tuple is False: warnings.warn( 'The `return_tuple` is a temporary arg, we will force to ' 'return tuple in the future. Please handle tuple in your ' 'custom neck or head.', DeprecationWarning) self.return_tuple = return_tuple if neck is not None: self.neck = build_neck(neck) if head is not None: self.head = build_head(head) self.augments = None if train_cfg is not None: augments_cfg = train_cfg.get('augments', None) if augments_cfg is not None: self.augments = Augments(augments_cfg) else: # Considering BC-breaking mixup_cfg = train_cfg.get('mixup', None) cutmix_cfg = train_cfg.get('cutmix', None) assert mixup_cfg is None or cutmix_cfg is None, \ 'If mixup and cutmix are set simultaneously,' \ 'use augments instead.' if mixup_cfg is not None: warnings.warn('The mixup attribute will be deprecated. ' 'Please use augments instead.') cfg = copy.deepcopy(mixup_cfg) cfg['type'] = 'BatchMixup' # In the previous version, mixup_prob is always 1.0. cfg['prob'] = 1.0 self.augments = Augments(cfg) if cutmix_cfg is not None: warnings.warn('The cutmix attribute will be deprecated. ' 'Please use augments instead.') cfg = copy.deepcopy(cutmix_cfg) cutmix_prob = cfg.pop('cutmix_prob') cfg['type'] = 'BatchCutMix' cfg['prob'] = cutmix_prob self.augments = Augments(cfg) def extract_feat(self, img): """Directly extract features from the backbone + neck.""" x = self.backbone(img) if self.return_tuple: if not isinstance(x, tuple): x = (x, ) warnings.warn( 'We will force all backbones to return a tuple in the ' 'future. Please check your backbone and wrap the output ' 'as a tuple.', DeprecationWarning) else: if isinstance(x, tuple): x = x[-1] if self.with_neck: x = self.neck(x) return x def forward_train(self, img, gt_label, **kwargs): """Forward computation during training. Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. gt_label (Tensor): It should be of shape (N, 1) encoding the ground-truth label of input images for single label task. It shoulf be of shape (N, C) encoding the ground-truth label of input images for multi-labels task. Returns: dict[str, Tensor]: a dictionary of loss components """ if self.augments is not None: img, gt_label = self.augments(img, gt_label) x = self.extract_feat(img) losses = dict() try: loss = self.head.forward_train(x, gt_label) except TypeError as e: if 'not tuple' in str(e) and self.return_tuple: return TypeError( 'Seems the head cannot handle tuple input. We have ' 'changed all backbones\' output to a tuple. Please ' 'update your custom head\'s forward function. ' 'Temporarily, you can set "return_tuple=False" in ' 'your backbone config to disable this feature.') raise e losses.update(loss) return losses def simple_test(self, img, img_metas): """Test without augmentation.""" x = self.extract_feat(img) try: res = self.head.simple_test(x) except TypeError as e: if 'not tuple' in str(e) and self.return_tuple: return TypeError( 'Seems the head cannot handle tuple input. We have ' 'changed all backbones\' output to a tuple. Please ' 'update your custom head\'s forward function. ' 'Temporarily, you can set "return_tuple=False" in ' 'your backbone config to disable this feature.') raise e return res