_base_ = [ '../_base_/models/twins_svt_base.py', '../_base_/datasets/imagenet_bs64_swin_224.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py' ] data = dict(samples_per_gpu=128) paramwise_cfg = dict(_delete=True, norm_decay_mult=0.0, bias_decay_mult=0.0) # for batch in each gpu is 128, 8 gpu # lr = 5e-4 * 128 * 8 / 512 = 0.001 optimizer = dict( type='AdamW', lr=5e-4 * 128 * 8 / 512, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999), paramwise_cfg=paramwise_cfg) optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=5.0)) # learning policy lr_config = dict( policy='CosineAnnealing', by_epoch=True, min_lr_ratio=1e-2, warmup='linear', warmup_ratio=1e-3, warmup_iters=5, warmup_by_epoch=True) evaluation = dict(interval=1, metric='accuracy')